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ABSTRACT

In this report the value of studying the tensor product of linear

codes is demonstrated. The pertinent problems concerning these product

codes are outlined. Algebraic techniques for determining the null space

of a tensor product space are developed. The understamding of the null

space of a p_ space is usei_al not _ _ +_° _....i_+ n_ this

report, but also for future research work. Decomposition of the procedure

and implementation of encoding and decoding of a product code into those

of its component codes are sh_n. In the case where the component codes

are cyclic, the product code has the special feature that its encoder

and syndrome calculator can be easilyconverted to those of its dual

codes by programmed switching. A simple'_ecoding scheme; namely,

perm_Itatlon decoding, which is capable of correcting a large fraction

of all the correctable errors of a systematic cyclic code, is investigated.

It is suggested that it be used either as a part of the correction-

detection scheme or in combination with an auxiliary scheme tO attain full

error correction capability. Finally, the minimnm distances of p_uct

codes, and suitable commnnication channels for employing such codes, a_

discussed.
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C_ 1

I_I_0DUCTION

H_ 7, Golay 8 and Slepian 9'I0 are the founders of linear algebraic

coding theory. Ever since the idea was brought up, the developments and

ad_,_nce_nt v_^_this area have progressed steadily. _v_A-^--linear codes,

the cyclic code suggested by Pramge ll and a wide class discovered by

Bose and Ray-Cks_dhuri 12,13 and independently by Hocquenghem 14 are the

most important ones in the sense that the implementation is relatively

simple. Peterson 2 gives a unified treatment of algebraic coding theory.

His excellent text book benefits many newcomers who are interested in

this area. The recent research work in linear algebraic coding theory

can be roughly divided Into the following five areas:

(i) To discover new codes which are particularly

suitable for a variety of commnnication channels.

(ii) To form new and simple decoding procedures and

algorithms for the existing codes. For example,

new decoding procedures and algorithms for the

B-C-H codes have been discovered recently by

several authors 15 ,16,17,18.

(iii) To analyze the existing codes so that their

properties such as algebraic structure, error

control capability, comma-freedom and weight

distribution, etc. can be _mderstood more

thoroughly.



(iv) To generate new recursive sequences which are

applicable to synchronization, ranging and

orbit determination purposes.

(v) To combine existing codes according to certain

algebraic rules to form a new compoundcode.

This will enlarge our vocabulary of codes to

suit special error-control capabilities required

by the user. Furthermore, it will perform some

special functions, such as error-locati_, which

are otherwise impossible by meansof a simple

componentcode alone.

Actually, there are no clear-cut ways to divide the above five

areas. To solve a problem in any one area usually requires the knowledge

of other areas. Sometimes one may even have to solve the problems in

other areas first before attacking the problem itself. Nevertheless,

the above division is adequate for the sake of convenience.

In order to fully understand and perform further research work in

the fifth area which is the main aim of this report, it is necessary

to have extensive knowledge of the other four areas. On the other

hand, a thorough understanding of the fifth area is helpful in

research work in all the other areas. The following shows some

interrelations between the fifth area and the other ones.

(i) and (v) The more new codes we know, the more

combined codes we will have. Conversely,

the combined codes stimulate research

work in the first area with the purpose

-2-
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(ll) (v)

(lli) (v)

of inventing new competitive codes, or

designing component codes particularly

suited for combination.

So far the decoding schemes for most of

the existing codes are not immediately

feasible. It is more promising to i_plement

long and complex codes through a combination

of short and simple codes, because the decoding

procedures for a combined code can be decomposed

into those of its omponent codes.

The relation between these two areas is

evident. The more we know about the properties

of the component codes, the more we understand

the combined code. The study of such properties

presents many new challenging problems.

Furthermore, a thorough understanding of the

properties of a combined code will help us

.
understaud a class of equivalent codes.

For example, the properties such as weight

distribution, minimum distance, etc. are

identical for two equivalent codes.

*The definition of an equivalent code is given in Chapter 2.

-3-



(iv) Cv) Presently, the maximum-length linear shift

register sequences and their combined versions

are studied for use in ranging and orbit

determination. Also the Barker sequences 29

are used for synchronization of code words.

It is believed that the knowledge of combining

codes may be applicable to the combination of

these sequences to generate new sequences

which are more suitable for these purposes.

The tensor product is the algebraic rule adopted in this report for

combining linear codes. The tensor product code is the linear algebraic

code

(±)

or (li)

whose generator matrix is the tensor product of the

generator matrices of two known codes;

whose parity-check matrix is the tensor product of

the parity-check matrices of two given codes.

In this chapter, the background of product codes will be briefly reviewed.

Next, the algebra of the tensor product of matrlces is illustrated. Then

the definition and some properties of tensor product codes are given.

Finally, the salient problems in this area are stated and the contents

of the following chapters are introduced.

1.1 Historical Background

Elias 6 first studied the iterated codes. Calabi, Haefeli 20, Hobbs 21

and Kautz 22 extended the work of iterated codes. Sleplan I introduced the

tensor product of generator matrices to represent the iterated codes.

=4=



Wolf and Elspas 23 suggested the idea of error-locating codes. Wol_ 4'25

and Chang and We_ 6 independently discovered that the error-locating

codes can be represented by a parity-check matrix which is a tensor

product of two parity-check matrices. Burton and Weldon 27 found a

way to construct a cyclic code by permuting the code words of a product

code with cyclic component codes of relative prime lengths. Chang and

Weng 28 initiated the study of dual product code which can be used as

variable redundancy codes with high £1a_bility.

1.2 Algebra of Tensor Product of Matrices

The tensor product of matrices will be used extensively in this

report. It is desirable to give some fundamental rules for operation

with tensor products.

Let the matrices A and B be gi_ven as follows

A __.

"all a12 ... aln-

akl ak2 ... akn

(1ol)

B _

bll b12 -.. blm-

b21 b22 ... b2m

...

(1.2)

-5-



where aiJ and bij are assumed, for the purpose of this report, as elements

of GF(q), q being power of a prime. Then the tensor product of A and B

denoted by A _ B is given as

A®B -

-allB al2B ... alnB

s_21B _22B ... _2n B

%aB %pB ... _

aiibli ... allbim ... ainbii ... ainbim--

akibll .-. aklblm ..- aknbii ... aknbim

aklbhl ....aklbhm ... aknbhl ... aknbhm

(1.3)

Note that A is a k × n matrix and B an h × m matrix, and A_B

becomes a kh × nmmatrix.

Some formal rules for operating with tensor products are listed

below for future use without proof•

A@O = O@B = O.

IX®lh - I1a ,

where Ik is a k × k identity matrlx,

-6-



(A1 + A2)@B = (AI@B) + CAR@B).

A@ CB1 + B2) -- CA@B l) + CA@B2).

aA@bB -- ab(A_ B).

(A@B) T = AT@B T ,

(1.6)

(L7)

(L8)

where T denotes transpose.

(AIA2) @ (BIB2) = (A1@ Bl)

(A@B) -I - A-l@B -I ,

(AR (1.10)

(1.11)

provided A aud Bare nonslngular square matrlces. The proofs of these

relations can be found in the llterature. 19

1.3 Definition and Properties of Tensor Product Codes

The generator matrix of a linear code is the matrix whose row vectors

are the basis of the code space. The parlty-check matrix of a linear

code is the matrix whose row space is the null space of the code space.

There are two basic kinds of tensor product codes derivable from two

given component codes. The first one is the code whose generator matrix

is the tensor product of the generator matrices of its component codes.

The other code is defined by its parlty-check matrix which is a tensor

product of the parlty-check matrices of its component codes. The dual

code of a linear code is a code whose generator matrix is equal to the

parlty-check matrix of the known code, or equivalently, whose parity-

check matrix is equal to the generator matrix of the known code. From

two component codes and their duals, eight product codes may be developed.

-7-



Therefore, it is an effective way of forming new codes from given codes.

In the case of cyclic codes, another definition of dual codes in terms

of the generator polynomials will be given in Chapter 4.

Due to the fact that either the generator matrix or the parity-check

matrix of a product code can be expressed as a tensor product of two

matrices, the entire code word block can be divided into subblocks each

of which has a length equal to that of the second component code. With

the subblock structure, the product codes can be understood somewhat

easier. Each subblock is controlled by the second component code while

the whole block is controlled by the first component code if _ach subblock

is interpreted as a digit of the first component code. A useful concept

of error control, the error-locating property, is a direct consequence

of this subblock structure. If s or fewer erroneous subblocks, each

having no more than t errors in any received code word, can be located,

the code is said to have the error-locating property (s,t).

For the case of product codes with cyclic component codes, it is

relatively simple to implement an encoder at the transmitting terminal

and a syndrome calculator at the receiving end with eight operating

modes possessing various capabilities in error control. All the operating

modes have an identical code word length which is equal to the product

of the lengths of the two component codes. The amounts of redundancy

are, of course, all different for the eight modes. If the code word

length is allowed to vary, we can employ the same encoder and syndrome

calculator to operate 12 modes which include 8 product codes, 2 original

component codes and the duals of the component codes. This is a highly

flexible system and is particularly suitable for time-varying channels.

-8-



Another interesting property of the product code is that it is

possible to correct both random errors and burst errors. 27

1.4 Problems to be Solved

Following is a list of pertinent problems concerning product codes.

(i) To _ the null space of a tensor product

space: this is desirable from the viewpoint

of o'b'_ a t.J:z._ mathematical understandiDg

of tensor product spaces, hence product codes.

The result should help one to visualize better the

structure of product codes.

(ii) Logic implementation: this is a practical problem.

It is desirable that the implementation of a product

code can be achieved by sidle logic combinations of

the implementations _Of_it_ com_nt codes.

(iii) Study of product codes with cyclic ccerponent codes:

since the cyclic codes are the easiest ones to be

implemented, special attention should be given to

the product codes with cyclic components.

(iv) Calculaticm of probabilities of error in data

trsnsmissiom for tensor product codes under

various rates of trausmissi_.

(v) _Calculation of the weight distribution of product

codes and determination of its relation with those

of the component codes.

-9-



Study of the code or codes which can be iterated in

a product manner indefinitely with a non-zero data

transmission rate. The iteration may include the

use of convolutional codes as components.

Chapter 2 is devoted to the null space of a tensor product space

(Item i). The possibility of decomposition of encoding and decoding

processes of a product code into those of its component codes is shown

in Chapter 3 (Item ll). In Chapter 4, we discuss product codes with

cyclic component codes and emphasize the dual product codes as variable

redundancy codes (Item ill). Some decoding schemes are studied in

Chapter 5. In the last chapter, miscellaneous results and concluding

remarks are included. Items (iv), (v) and (vi) are reserved for future

studies •

-lO-



C_ 2

THENULLSPACEOFA TENSORPROI_JCTSPACE

A linear code can be completely specified by either its generator

matrix or its parity-check matrix or both. A product code is determined

by two original code spaces and the method of combining them. For

example, one of the product codes is a code whose generator matrix is

the tensor product of the generator matrices of two given code spaces.

In order to have a better understanding of a product code, it is

desirable to know both its generator matrix and its parity-check matrix.

The knowledge of both facilitates the determination of the weight

distribution of the code and the implementation of encoder and decoder.

Furthermore, it provides better insight into the code structure.

The row vectors of the generator and check matrices of a code are

the null spaces of each other. In the case of a product code, either its

generator matrix or check matrix is expressed as a tensor product of t_o

component matrices. Therefore, it is desirable to develop some techniques

of finding the null space of a tensor product space. Slepian I found a

simple way to evaluate the null space of an equivalent code space of the

tensor product code space instead of that of the tensor product code

space itself; he also concluded that there seems to be no simple

expression for the parlty-check matrix for a product code of two

component codes in terms of the parity-check matrices of the component

codes.

The direct method of Section 2.1 is an extension of the technique

suggested by Slepiau. 1 Section 2.2_ the algebraic approach_ makes use

-ll-



the algebraic structure of the tensor product space to express its null

space in terms of the null spaces of the componentcode spaces. For

completeness the determination of the null space of a tensor product

space involving a special type of translation of fields is discussed in

Section 2.3. Such translation is desirable in designing more efficient

error-locating codes.

Since the generator matrix G and the parity-check matrix H of a

code space will be used Very frequently in the following sections, and

because of the dual property of these two matrices, we introduce a

gp (stands for generator-parity-check) matrix D and a pg (stands for
I

parity-check-generator) matrix E. The gp matrix D can be either a

generator matrix G or a parity-check matrix H of a code space; the

row space of the pg matrix E gives the null space of the gp matrix D.

In other words, if we set D = G, then E = H; and if we set D = H, then

E = G. The relation between D and E can be described mathematically by:

DET = 0

or equivalently EDT = O. (z.1)

If the given gp matrix D of a code can be transformed to the reduced-

echelon form D' by elementary row operations, then the following theorems

(after Peterson 2) give a simple way of finding the pg matrix E of the code:

Theorem 2.i

If one matrix is obtained from another by a succession

of elementary row operations, both matrices have the

same row space.

-12-



Theorem 2.2

If U is the row space of the gp matrix D' = [Ih P],

where Ih is an h X h identity matrix and P is an

h X (n-h) matrix, then U is the null space of

Q = [_pT in_hi, where In_h is an (n-h) × (n-h)

identity matrix.

With the help of these theorems the null space of any gp matrix D,

which can be transformed to the reduced-echelon form D' by elementary

r_ operations, can be easily found. Unfortunately, in general, the

gp matrix of a product code cannot be transformed to a reduced-echelon

fore without resorting to the permutation of columns. Although the

per_-tation of columns of a gp matrix does not change the minimum

distance or the weight distribution of the code, it will, however,

destroy other code properties such as being cyclic, orthogonal, and

co_ free.

The following sections give some techniques to determine the null

space of the gp matrix D of a product code without disturbing its

original ordering of columns. Since the null space is specified by

the pg matrix E corresponding to the known gp matrix, D, all the

techniques in this chapter show how to evaluate E from D. The same

techniques may be used in evaluating D from E.

2. i The Direct Method

Two linear (n,k) codes are said to be equivalent if each code word

of one code can be obtained by a certain permutation of code symbols of

one and only one code word of the other code. This equivalence relation

-13-



can be defined alternatively as either

(i) two linear (n,k) codes are equivalent if and

only if the generator matrix of one code can

be obtained by permuting the columns of a

generator matrix of the other code;

or (il) two linear (n,k) code are equivalent if and

only if the parity-check matrix of one code

can be obtained by permuting the columns of

a parity-check matrix of the other code.

The purpose of investigating the equivalent codes in this section

is to find the pg matrix E of a product code when its gp matrix D is

known through using one of the equivalent codes as an intermediate

step.

Before proceeding any further, we first define a permutation matrix

_. The _ matrix is an n × n square matrix whose columns (or rows) are

obtained from a certain permutation of the columns (or rows) of an

n X n unity matrix I. It is evident that when a k × n matrix A is

postmulitplied by _, the resultant matrix A' = A_ can be recognized as

a matrix whose columns is a certain permutation of that of the matrix A.

The pattern of permuting the columns of the matrix A to obtain A' is

identical to that of permuting the unity matrix I to form _.

Lemma 2.1

A permutation matrix _ is an orthogonal matrix,

_T -1i.e. _ _ _ .



Proof

The permutation matrix _ is obtained by permuting

the rows of the unity matrix I; hence each rc_ of

the ma+_ix _ can be considered as an n-tuple of

the form (O,O,...,O,l,O,...,O), where only one

component is one and the rest are zeros. We

write _as

where

Since ai,'S are row vectors of the unity matrix I

and the row vectors of a unity matrix are orthogonal,

• !

then

= I,

denotes a row vector.

(2.2)

(2.3)

-15-



which implies
_T = _-i . Q.E.D.

Theorem 2.

Let D and E be the gp and pg matrices respectively of

code C, then D_ is a gp matrix of the code C', which

Is equivalent to C, if and only if E_ is a pg matrix

of the code C'.

Proof

Aiso;

(D_) (E_)T

= D_ _-i ET

=DIE T

= DET

=0 _

) =

) =

by Lemma 2.1

by hypothesis.

Since the rank of a matrix is preserved under

permutation of the columns of the matrix, therefore,

if D_ is the gp matrix of the equivalent code C ',

then E_ must be the corresponding pg matrix. Q.E.D.

Theorem 2.4

Let D be a gp matrix of a code C. Assume D_ is the

gp matrix of an equivalent code C'. If E' is the

pg matrix of C', then E = E'_-i = E'_T is the pg

matrix of C.

-16-



Proof

And

(_)(_,)_= 0

D_• = D(E,._)T

= D(_)_(_,)_

= (_)(E')_ = 0

_(_) = _CE'_ _) = _(E')

by hypothesis

by Equation (2. _)

Q.E.D.

(2._)

Theorems 2.1, 2.2, 2.3 and 2._ suggest a way to evaluate the pg matrix

E when the gp matrix D of a code is given. The procedures are as follows:

i. Let D be the h X n gp matrix of a linear (n,k)

code C, then by proper elementary row operations

D can be transformed to an echelon form D' which

contains h columns each of which consists of one

unit component and the rest of the components are

zeros. This step can always be accomplished because

an h x n gp mati_Ix D co_m_Sts of at least one set of

h independent columns if h < n 3 and rank D = h. It

can be easily shown that any one of these sets of h

independent columns can be transformed to h columns,

each equal to one and only one column of the unity

h×hmatrix Ih.

2. Choose a suitable permutation matrix : such that

D'' = D'_ = [lh, P], the reduced-echelon form of D.

-17-



o

o

Form E" = [_pT, in_h]. By Theorem 2.2, we know

D"(E") --o.

Let E = E"_ T . By Theorem 2.4, E is the pg

matrix of the code C corresponding to the gp

matrix D'; but D' is obtained from D by elementary

row operations, hence D and D' generates the same

space? Therefore, E is the pg matrix of the code

C corresponding to the gp matrix D.

Example

D

-i0 I000000

OllO00000

I01101000

000011000

O00000101

000000011

(2.5)

1. The first row is added to the third row

"I0 i0 O0 O00

OllO00000

000101000
D I =

000011000

000000101

)O0000011

(2.6)

2. The first, second, fourth, fifth, seventh, and the

eighth eolumns should be gathered together to become

the firs± sixth columus, hence we choose

-loooooooC

OlO000000

000000100

001000000

O00100000

O00000010

000010000

O00001000

000o00001

-18-
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The last three columns of Equation (2.7) can be

interchanged amongthemselves.

D" = D'_ -

lO0000100_
!010000100

001000010

000100010

000010001

0 O0 O0 i00l

(2.8)

3. From Equation (2.8), we have

D

i00

i00

OlO
P- 010

001

_oo_

(2.9)

-_ IoZ°°°!]
= OllO

0001
(2.zo)

then ,...; [-,,,Io4

lO00010_
OllO001

O001100
(2.:u)

4.1

E = E"_ T =
ii00000_
0011100

0000011
(2.3.2)

The method described in this section is straightforward but tedious.

Since it does not refer to the component codes or the manner of their

combination, the resulting pg matrix E found in this manner usually is

-19-



not in a form which gives the best insight of the code structure• There-

fore, it is necessary to resort to some other techniques which will lead

to a more meaningful result.

2•2 The Algebraic Approach - Elements of Two Original Component Codes

and Elements of the Resultant Code Expressed in the Same Field•

The algebraic approach relies on the algebra of the tensor product of

matrices as well as the understanding of vector spaces• The following

lemmas and theorems are first developed to facilitate the discussion.

Lemma 2.2

Let A and B be two square matrices of order r and s

respectively_ then

IA (_B =IAI S [BIr .

Proof

It is known that every square matrix can be trans-

formed into a triangular matrix* by a non-singular

*By triangular matrix, we mean the matrix of the form either

B

all al2 • . .

0 se2 . . .

0 0 .

• • Q

0 0 0

m

bll 0

b21 b22

or . °

• m

bnl bn2

@@@0

0... 0

bnn

-20-



square matrix in the following way:

-i

where TA

IQ21_o.

QI_ A QI = TA

Then

IA_,I=

O,

A Q1 ) Q._.l_(Q_l B _) Q21 I

=I_,_A_._®_ _ _'1

=I_®_II_A_,_II_'_,_'I
=i_A®_l•

(2.z3)

(2.z_)

o a22 . . . a,2_

0 0 .

0 0 a

r

= Haii
i=l

(2.z6)

0 b_ . . . b2s

0 0 .

@

0 0 b
SS

(2.z?)
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By Equations (2.15), (2.16) and (2.17), we have

1A ® BI=I_A® TBI

allTB a_TB • • • alrTB

0 _2TB • • • a2r_ B

0 0 •

o ..... o arr_ B

allbli

ai_b22

allbss

a22bll

a22b22

a22bss

-IAI_I_I_• Q.E.D.

arrbss
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Lemm 2.5

Let D-- P_QaudD' =P'_Q'. If P' and Q' are

obtained from P aud Q respectively by a succession

of elementary row operations, then D and D' have

the _ row space.

Proof

This is a direct consequence of Theorem 2.1. The

row space of D = P _ _ contains all the elements

_L

of the form ,d, =Z,I__ _,@qi_ , where _ _ row

i=l

space of P = row space of P', ,qi, _ row space of

Q = row space of Q'. Hence, ,d, _ row space of

D' or row space of D _ row space of D'

we have row space of D__row space of D'.

row space of D - row space of D'.

By symmetry,

Therefore,

Q.E.D.

From the above lemma, we can see that the rank of the matrix D --P _ Q

is invariant if elementary row operations are performed on the matrices

P ana Q.

Lemma 2._

Let D = Dl_D 2 , then

-23-



Proof

Let A and B be the square matrices of maximum order

contained in D1 and D2 respectively, such that

IAl_ o, IBI_ o.

Then it is clear that

order of A = rank D1 and let it be denoted by r1

order of B -- rank D2 and let it be denoted by r2.

Then the square matrix A _ B must be contained in

D = Dl_D 2. But, by Lemma 2.2,

IA@ BI=IA[r21BI rl _ 0.

Hence, Rank D _ order of A_B = (order of A)(order of B)

(Ran D1)(RankD2).

By Lemma 2.3, the rauk D is uncha_ed, if the elementary

row operations are performed on D1 and D2. But D1 can

be reduced to rI non-zero rows since its rank is rl;

similarly, D2 can be reduced to r2 non-zero rows.

Hence, after performing suitable elementary row opera-

tions on D1 and D2, D = D1 _ D2 contains exactly rlr2

non-zero rows. Therefore,

Rank D _ rlr 2 = (Rank D1)(Rank D2).

Combining with the above result, we have

Rank D = (Rank DI) (Rank ½ ). Q.E.D.
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Theorem 2._

Let DI and E1 be the gp and pg matrices respectively of

code CI, and D2 and E2 be gp and pg matrices respectively

of code C2. If DI is amh i × ni matrix and D2 is an

EI_ In2 are contained in the null space of the matrix

Proof

D(z_l@ ½)_

= (I_@ I_)(Zn_@_)_

= I_Zn_@ _-_

= % @ o, s_e D2_

=0

Likewise, D(E I {_ In2) T = O.

=0

By elementary row operations, the identity matrix Inl

formed into the form i in such a w_y* that

(i)

Q.E.D.

can be traus-

row space Inl = row space E , this is always

_J can be obtained Inl bytrue since E
from

elementary row operations;

*_ may be called a complementary space of E with respect to Inl

-25-



(ii) (row space of EI)(-_ (row space of El) -- (0,0,...,0),

the all zero nl-tuple_ (2. L8)

The above two conditions can be described mathematically as row space

of Inl = (row space of E1 ) _ (row space of El) , where _ is the notation

for the direct sum.

Similarly, the identity matrix In2 can be transformed into the form

E2 by elementary row operation such that row space of In2 -- (row space

of E2) _ (row space of E2). (2.19)

I Corollary 2._.1

The row spaces of ELSE2, ELSE2, and EI_ 2 are

subspaces of the null space of the matrix D = D1 _ D2.

The proof is similar to that of Theorem 2.5, hence is

omitted here.

Let AI, A2, B1 and B2 be h x nj k X n, Z X m and r X m

matrices respectively, then

provided one of the following three conditions is satisfied:

IAll(i) Rank A2 = RankA1 + RankA 2,

(iii) both (1) and (il) are satisfied.
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Proof

In the following, it is assumed that the condition

(i) is satisfied. The proof for the case that

condition (ii) is satisfied is similar and the

proof for the condition (iii) is evident. Hence,

the proofs for con_tions (ii) and (iii) wiil be

omitted.

By _ 2.4, we have

Rauk(Al_B1) = (Rank A1)(Eank B1)

_(A z @_) = (_ A2)(_ _).

o

To complete our proof, we need only to show that none of the non-

zero row vectors of AI _ BI can be expressed as a llnear combination of

row vectors of A2 _ B2 and vice versa. Let

AI (_)BI =

D

®

-bll b12 ..- blm-

b21 b22 ... b2m

b_l b_2 .-. b_m

let,_,®_ be a _ ozA1®_l :

•••, ai2bJm, ..., &inbjl, _InbS2, •.., _B_m)-

-27-



Define a linear mapping

MS: row space of In_I m--* row space of In such that

only 8th, (m+8) th, (2m+8) th ... [ (n-1)m+7] th components

are retained after mapping.

Therefore,

_[ aA® bj] = (ailbjS,ai2bj_,...,alnbj_)

= bib(all, ai2, ... ,S-ln)

= bj8_ •

M 8 can be easily shown to be a homomorphism. Let

and suppose

A2_B 2 =

_ii _2 ''- _n

_i _2"'" _n

®
JB21 fB22 ... fBL_m

_rl IBr2 "'" JBrm

_®_L = Cll(_®,_1 )+ Cl2(_® _2,)+...

...+ Clr(_l@,_r)+ ...+ Ckl(_L____@_a__j1)+ ...

+ c_( _, ® ___) ,

where CII , C12,... ,Ckr are constants and at least one of them is not

zero, and (_L_l @ _l ) , ..., ( _k_@ _L___r) are rows of A2@B 2. Then

-28-



I'%[_ai,_,bJ, ] = I'_5[ClI(,_I,_,_L,) + C _( _! _) + ... + Ckr( _k_ _r)]

or

for 5 = 1,2_3,..._m, and j = i_2_3_..._ since B 1 is not a mat.__x _ith

all zero elements. There exis_ for each _ _ at least one non-zero

_._ jo _ .=_j is satisfied. I:_ ..............

can be obtained from a linear combination of _ _ _ _..._ _ • This

is contradictory to our assumption that

= Rank A i + Rs_k A 2Ranh A2

(2.22)

which implies that no rows (containing at least one non-zero element) of

matrix A I can be obtained from a linear combination of the r_s of _trix

A2.

Through a similar procedure, we can shoe that no rotes of A2 '_ B2 can

be obtained from AI @ B I by e!ementa_ rc_¢ operations. There.fore, we have

= Rank(Al @ BI) + Rsuuk(A 2 _ B2). (2-23)Rank LA2 Q_ B2

The proof is completed by combining Equations (2.20), (2.21), and (2.23).

Theorem 2.6

Let D I s_ud E 1 be the gp s.ud pg matrices _essec_'_ _-_e_" _"

of code C I with block length nl_ &ud let D 2 s_ud E 2 be

the gp and pg matrices respectively of code C 2 with

block length n 2. If the gp matrix of the product code

is given by D = DI@I)2, then the pg matrix of the

-29-



o

product code is

E - IEI_Ee

[El @E ,

where row space of Inl = (row space of El) _ (row

space of E-l), and row space Ine = (row space of E2)

spaceof

Proof

By Corollary e.5.1, we know that the row spaces of

E l@_, E l@E2, and E-I@E2 are all contained in

the null space of D = D1 @ D_. Hence,

[irow space of El@Eelc row space of E.

® EeJ

The dimension of the row space of D = Rank D = (Rank Dl)(Rank De).

The dimension of row space of E = Rank E

= nln 2 - Rank D

= nln 2 - (Rank DI) (Rank D2 ).

Since the block length of the product code = nine, all we

need to show now is that the dimension of

the row space of E1 _ Ee = Rank E1 GE e = Rank E.
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This is true, since

IE_@E 2 =

= (_ E1)(_ _2 ) + (m,_ _-l)(_ E2)

by Lemma 2.5, since Rank E1 = Rank E1 + Rank EI.

But Bank E 1 = nI - Rank DI

Rank _ = n2

Rank E 1 = Rank Inl - Rank E 1 = nI -

= Rank DI

mnkE 2 = n2 - mnk_ .

Substituting Equation

(n_-_k_)

(2.25) to Equation (2,2_), we have

(2.2_)

(2.25)

Rank EI@E 2

@

- (nI- Rank DI) n2 ÷ (Rank Dl)(n 2- Rank I>2)

-- nln 2 - n2Rank D1 + n2Rank D1 - CRank D1)(_ ]>2)

= n1_ - Cz_ D1)(_ D2)

= Rank E Q.E.D.
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Corollary 2.6. i

Theorem 2.6 is equivalent to the statement that if

D = DIED2, then

E --

Q

 nlO1E2
_l @ In

Proof

By Theorem 2.6,

row space of E = row space of

= row space of

El® E2

®E

EI ® E2

- row space of

= row space of

EI® E2

El®_2

since row space of Inl - row space of E1

--row space of [E_l1] Q.E.D.

Theorem 2.6 gives a method of obtaining a set of basis of the null

space of the matrix D = Dl_D 2. The basis is divided into three parts;

namely EI_E2 , ELSE2, and E--l@E 2. The row space of E can be

expressed as the direct sum of its subspaces

(row space of El@E2) _ (row space of EI@E 2) _(row space of _I®E2).

-32-



It should be noted that the spaces of the matrices E--I and E_ may be equal

to those of the matrices DI and D2 respectively*, but that, in general,

they are not. When the spaces of the _ matrices differ from the spaces

of the D matrices, it is sometimes a rather tedious procedure to evaluate

the _ matrices from the E matrices which are not in echelon form. On the

other han_, Corollary 2.6.1 gives the null space of D = DI _D 2 with a

__ o_-_+ of _.i_,io+_ and no uu_,_ matrices to be e;-aluated.
.... . ......... ,,.,,m_6v i_..._,r, v 1_. _w-k.,-.. _4.,.k,_,o ,w .,_., v,,,._.

The row vectors of this representation of the null space are, however,

not linearly independent.

E o:lio 10 ' i
OlOl

Example

Given

_01000000101101101

0 ii 0000000 ii0 Ii011

0 O0 i01000 i0 i000 i01

0 O001100 O0 ii0 O0011

0 O0000 i0 i000 i01101

0 O00000 ii0000 ii Ol 1

*This means that the complementary spaces of E 1 and E2 coincide with

their null spaces.
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It can be easily shown that

E 1 = lil0

1 olo_I01

i00

E 1 = E!°1
0 ooo_000

i00

By Theorem 2.6, we have

m u El® E2

®E

q

iolol ® i
_lloo

i0101 _ lll
iliO0

o 'l o o o ® i i 1
ooloo

-i00

010

i00

010

i00

OlO

iii

iIi

lll

iii

000

000

-34-
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lO0000100000000

OlO000010000000

O00100000100000

000010000010000

i00100000000100

010010000000010

i 1100 Oil i000000

000111000111000

llllllO00000111

000000000000000
iii000000000000

000111000000000

i



By Corollary 2.6.1, we have

= 4E1 _In2J

i

ioooo
01000

00100

00010

00001

00000

1010
0101

ii00

o-

o[0 _ 1
0

0

1

1

0

m

ll

00

00

00

00

00

i0

01

00

i0

01

00

i0

01

00

Although this representation

bel2.

m

i00000000 O000000

011100000 O0 O0000

0000111000000000

0000000 ii i000000

000000000 OlllO 00

0000000000000 iii

0100000100000000

0010000010000000

i00100000 i000000

0000100000100000

00000100000 i0000

i00000 i000001000

0 i00100 O0 O000 i00

00 i001000 O0000 i0

i00 i00 i000000001

has 15 rows, the actual rank of E remains to

2.3 The Determination of the Null Space of a Tensor Product Space

Involvi_ the Translation of Fields - Elements of Two Original

Component Codes and Elements of the Resultant Code Expressed

in Different Fields

When the gp matrices of two original component codes D1 and D2 are

over GF(p_), the elements of the resultant tensor product code given by

D1 _ D2 are first expressed in terms of field elements of GF(p_), then
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translated into the field elements of GF(p) according to certain rules.

The technique described in Section 2.2 is not applicable, in,general,

for this case since a change of the rank of the matrix may occur due to

the field translation.

As the companion matrix plays an important role in the development

of this section, a brief explanation on this matter is warranted. Let

r(x) - r0 + rlx + ... + r__l_'l_ ÷ x_ be a monlo polynomial, then the

companion matrix of the polynomial is defined as

m

0

0

0

Tc = .
o

-r 0

1 0 0

0 1 0

0 0 1

-rI -r2 -r3

Q*_ 0

t,, O

• o. O

•"" -rL-1 "

Sometimes the companion matrix is defined as the transpose of the expression

T O =

0 0 0 ..• 0 -r0

1 0 0 ... 0 -r1

0 1 0 ... 0 -r2

0 0 i ... 0 -r3

0 0 0 ... 1 -r__]
i

in (2.26)

For convenience, both matrices of (2.26) and (2.27) are called the companion

matrix of r(x). They can be dlstinquished by the notations Tc and To.

There are two methods of obtaining p-ary codes through the fields

translation from the q-ary to the p-ary. The first method is shown by

(2.26)

(2.27)

-36-



Cocke 35 who shows the following way of fields translation: the parity-

check matrix Hq of a q-ary code is first chosen, then each element is

expanded into an _ X _ p-ary square matrix, where q = _, in the following

manner :

o

_0 _ TO O = I_

_I _T 0

_i _ Toi

_q-2& Toq-2 ,

where_ _ is a primitive element of GF(q)_ and TO is the companion matrix

of the primitive polynomial over GF(p) with _ as its primitive root.

It can be shown* that the expanded p-ary code is generated by the generator

matrix which is obtained by the expanded Gq, the generator matrix of the

original q-ary code, in the following manner:

0 _ [0_]

_0 _ Tc 0 = I_

IB1 _ T c

_i ____>Tel

_q-2_>Tcq-2 .

*See Appendix, Theorem A-_.
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It has been pointed out that 33 a code obtained from the fields trans-

lation in this manner is suitable for burst-error correction. It should

be noted that the minimum distances, the total number of code words and

the data transmission rate of both the q-ary code and its expanded p-ary

code are identical, but an increase of code word length by _ times results

from the translation. The second method is useful in the design of a

p-ary Bose-Chaudhuri-Hocquenghem code. In such a design it is convenient

to express first the elements of the parity-check matrix in terms of the

roots, which are elements of GF(q) with q --pL of the code generator

polynomial g(x) over GF(p), and then expand the matrix into its p-ary

representation according to the following rules:

0
00 •

;e

io

L0

132 2] =

-38-



where _i and TO are defined as before. If the row space of the original

q-ary matrix is cyclic, the cyclic property is unchanged by the field

translation made in the second method. However, such is not the case

under the field translation of the first method. Furthermore, it is

possible although less ccmvenient to obtain the p-ary B-C-H parity-check

matrix without employing a_ field translation. This is not feasible

if the first method is used.

An efficient error-locatimg code can be obtained by employing the

technique of field trauslation. Its structure can be understood from

two different viewpoints:

(i) The parity-check matrix of size r1 × nI of a

q-ary t-error correcting is first designed.

Each q-ary elememt is then mapped into an

r2 × n2 p-ary matrix, where r2 _ n2, instead

of a square matrix in the following manner:

0 ----_ [0r_]

[30 ==_ A=[Ir2 : P1 or [Ir2 : PI _

_i _ Toi A

@

13q-2= %o.-2A,

-39-



where A is the p-dry parity-check matrix of an

s-error-detecting code. It can be easily shown

that the row space of ToiA is identical to that

of A. This viewpoint does not require the concept

of the tensor product of codes.

(il) The parlty-check matrix is considered as the p-ary

representation of the tensor product of two q-ary

parlty-check matrices, denoted by H - [Hlq_ H2q] p.

The p-dry representation of H2q obtained by using

the second method is identical to the matrix A as

described in (i).

It is easier to evaluate the code space from the tensor product view-

polnt, especially when H2q is convertible into a slngle-rowed matrix. This

conversion can be easily performed when the second component code is cyclic.

A cyclic p-dry code with s rows in its parity-check matrix can be made

identical to a cyclic code with a one-rowed p_-ary check matrix, provided

= rs and a suitable mapping is performed from GF(p r) to GF(p_). The

following theorem is useful in determining the code space of such a

product code.

Theorem 2.7

Let Dlq and Elq be respectively the gp and pg matrices

of a q-ary code C1 of length nl, where q = p_' If

(1) D2q is a 1 × n2 pg matrix of a cyclic

code C with n2 m _;
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(±i)

an&

with suitable mapping, D2q is of the form

Io pl _2. _-i _ 8_ _iL+1 _±n2-1]eo _ olo

where 131 is a primitive element of GF(q);

(iii) the row space of E2p is the null space

oz [_q]p , thenthem_ _e of [_q @ _q]p

i6

Inl@ E2p

Elq

I
!

!

• ! 0C0 N• !
!
!

m

where [ ]p, is the matrix with each element in the

bracket expressed as a row vector over GF(p) in the

following manner

and OcoM is introduced for the sake of compensating

the length of each submatrices in the following

manner:

13i

a

-_o ,f

131 '!
I

•. ,l°c I
!

'-1 ! _]

m

iB

!

!

" I' °_x(n 2-L)
I

i+_- ,
I t



The proofs of this theorem and its preliminary lemmas are given in

the Appendix.

We close this section with an example to illustrate Theorem 2.7.

91_= Go _2 _5 _6 _6

Let

D2__-[IBO IBIIB2 IB3 IB4]

=

= = o7I.o°I.

Therefore,

[i°° ilD2P - Ol010 1 = binary representation of D2q

E2P = ii0 .

The row space of D2p and that of E2p are

Elq =

-_o _e Go

G2 _5 o

_5 _6 o

G6 _6 o
m

the null spaces of each other.

0 0 0

G° o o

o G° o

o o G°
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-i0010 ; '_i0010 iOlOll, lllO0 :llO01-

,01011 :01110 ;i0010 '_O0101olon:0 ,
O010i, OOiOi iOlll: liOOi ,iOOiO

i0010 '01011 ',lllO0 :llO01 *ii001

iOlOll _01110 'i0010100101 :00101
0 'ooloi:ionl_f ,ll001'i i0010 ,i0010

Then the null space of [DI(_@Dr2_ isjp by Theorem _@7_

®I_° I,1 '
kq :°coM

!

[p2, !

| I

izolo',O, 0 ',
ql%oiL .... ,....

'ii010 , 0 :
0 lOllO l ,

.... |....

I O i ii010
0 , , 01101

0,0'' I 0
.... r- 1

O10 , O
.... i__ -----I ---- --

0,0' 0
f6ohS, ooloo,i6obdJ

O

O

i

iO O

:O O
!

! i ,

,0 ,0 0
_J .... L_ _ _.2 .....

liOlO',
0 i 0I

,OliOi_',.........
l llOlO '

01101 , 0

......... ;il-oi6
' 0 0 :OliOi
d ....

!

o_.ooo,_1ooo,o_.ooo,¢b 0:0
ooAoq;onoo'ooloo',_ l
ooloo, hi6o = - - - ioooo

11000'10100' 0 '01000 ('-")' 0

onoo:ioooo[ 'ooloo_ t
iifo_,hb_6 : .... i -_2 -i, i6o_
_.o_.oo,_.oooo:O ' 0 :o_ooo,0
ioooo[olooo_ ,-- ,ooioo,
........... I- , '106-0@

__o_.oo,_.o__oo,0 'O'O ,o_.oooi0000 ',i0000 t ' , ,
01000,01000 i , ' '00100
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2.4 Remarks

The direct method of finding the null space is straightforward but

tedious. However, it is the one method which remains applicable when

the other two methods fail. When the elements of the two original

component codes and the elements of the resultant product code are

expressed in different fields, usually the resultant code elements

are in the ground field and the elements of component codes are in one

of the extension fields. Theorem A-3 of the Appendix gives the row

space of

Elp _ In2
InI _ E2p]

space of [Dlq_D2q _ . In this case
only as a subspace of the null

the direct method is recommended for determining the whole null space

over the ground field, and Theorem A-3 can be used to lend some insight

of the code structure.

It is interesting to note that, by Corollary 2.6.1 and Theorem A-3

that while

Elp® In2

o_o_o_,o_oo_,_eothoou__e o_[_ _ _1' t_e_ o_ce

Inl ®.Ea_]
Elp @ In2]

is Just a subspace of the null space of [Dlq@D2q _ • It can further



F 7
be shown that the row space of LDlq@D2q_ is a subspace of

A_

[Dlq]p@ [D2q] p • While the circuits for implementing [Dlq@D2q] p and

[Dlq]p_ [D2q] p are of about the s_me order of complexity, the code space

specif_-ed by the latter is larger than that of the former. Therefore,

the adoption of the latter as the G matrix of a product code is preferred.

By similar reasoning, a product code with parity check matrix H = [Hlq @H2q] p

is better than that with H' = [Hlq] p @ [H_q]p .

Theorem 2.6 can be extended to be applicable for higher order tensor

product codes as follows.

E

is the row space of

The null .space of the raw spacm of

-%® E2@Es I

where the row space of F_ is the null space of Di for i = 1,2,3. Likewise,

Corollary 2.6.1 can be extended to read that the null space of the row space

of



is the row space of

-Inl _ In 2 _ E3--_

Inl_E2 _In31

It is not difficult to generalize the above results to the case of

D = DI_D2_... _Dj for any J.

Theorem 2.7 is useful to determine the null space of the row space of

[Dlq_ D2q]p , provided l>2q is the one-rowed q-ary gp matrix of a cyclic

code. In the Appendix, this theorem has been extended to cover the case

when the second component code is not cyclic. Also the difficulties are

pointed out when D2q is a multi-rowed matrix.

-46-



CHA_nm 3

ENCODIRG AND IECODING OF TENSOR PROIECT CODES

Usually, there are two schemes for encoding a linear code. The

first scheme is simply choosing either prestored basis code vectors

or a linear combination of such vectors. The other method is to

calculate the parity-check digits from the given information digits

according to the parity-check matrix of the code, then the check digits

and the information digits are combined together to form a code word.

There are also two general methods for decoding a linear code.

One is to cumpare the received sequence with the code word dictionary.

The code word which has the smallest distance from the received sequence

is considered to be the original code word sent by the transmitter.

The other method is to check whether the received sequence satisfies

the code parlty-check matrix. I_t _ be the received sequence. The

syndrome of any received sequence is defined to be

where H is the parity-check matrix. The decoding procedure is to

evaluate _he syndrome first, then to determine the error pattern or

to detect the errors from the calculated syndrome.

The encoding and decoding of a product code can be achieved by

similar schemes. But in so doing, we do not take full advantage

of the product code. Hence an alternate scheme should be used. The

main purposes of this chapter are as follows:



(1) to design the encoding circuit for a product code by

a logic combination of the encoding circuits of its

componentcodes;

(li) to design the syndromecalculator for a product code

by a logic combination of the syndromecalculators

of its componentcodes;

(Ill) to decomposethe decoding procedure of a product

code into the decoding procedures of its component

codes.

The designs will first be directed to the type of product codes in

which H = Hl_H2, then to the type in which G = GIQG 2.

The discussion and results in this chapter are intended to be as

general as possible, hence they are applicable to any product code with

linear component codes. Specific examples will be deferred until later

chapters. It is believed that the encoding and decoding schemes presented

here for the product codes with parity-check matrices H = HI QH 2 and

those with H --[Hlq_H2q] p have not been worked out in such a detail

elsewhere. It is also believed that the decoding scheme described in

Section 3.8 is the most straightforward technique in comparison with other

existing schemes.

3.1 Encoding by the Parity-Check Matrix H

Systematic encoding* for a linear code whose parlty-check matrix is

specified can be accomplished by the check digits calculator of the code

*See Hazing 7 for the definition of systematic code.
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shown in Fig. 3.i. The input sequence consists of information digits

input

(information d_ts)

Check Digits

I Calculator H
outlmxt

J I I
-t Buffer I

Fig. 3.1 _eck Di_tb Calculator for Enc_ a Linear Code

and all zeros in checking positions. The check digits calculator gives the

check digits for the input informatiOn digits. The check digits are added

to the input sequence to form the encoded output sequence or a code word.

For si_plicity_ Fig. 3.1 is symbolically replaced by Fig. 3.2.

(i_ormationdigits) !

Encoder
output
(cMe.won)

Fig. 3-2 A Block Representatiou of Fig. 3.1

3.2 zncod_ of a Productcodewith _ty-Check _atr_x_ = Hl_ _

In this section and the following two sectians we deal only with the

case that the elements of the resultant product code and the elements of

its component codes are in the same field. The case involving translation

of fields will be discussed in Sections 3-9 and 3.10.

Fig- 3.3 sh_s the encoder for a product code with l_ty-check matrix

H = HI_ H 2. The inputs to the scalar multipliers,
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input

(information

digits)

--@

Reset

H hCheck Digits _ccumulating
H2 Adder

Calculator

Re set
Check Digits AccumUlating

Calculator H_ Adder

• UReset
arl

__ Check Digits }__ Accumul_.ting, Calculator H2 Adder

t

So

Buffer _ = output

(code words)

Fig. 3.3 An Encoder for the Product Code with

Parity-CheckMatrix H m HI_H_v_

aI, a2,...,arl , are set equal to the components of (hlj, h_j,...,hrlj) T

respectively when the nl-J+l , nl-J+2,...,nl-J+n2'th digits of the input

)T jth
sequence are fed into the encoder. (hlj, h2j,..•,hrl j is the

column of the matrix H1, an rI X nI matrix. The check digit calculators

H2 calculate the check digits once for every subblock containing n2

digits of the input sequence. The accumlating adders over GF(q) are

adders with memories; each new input to the adder is added (over GF(q))

to the value previously stored. At the end of each code word length

the adders should be reset to zero. The outputs of the adders are

added in proper order to the read-out version of the buffered input

sequence• For the sake of explanation, let us assume H1 and H2 are the

parity-check matrices of systematic codes, in other words
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H1 = [Irl Pl] (3.2)

= [Ir2P21, (3.3)

then

HI®_ =

[I2 1:'21

[I21'2] 0

" I
- i

I
[I21'2] t

(3-_)

It is evident that the columns of HI_ _ containing only one single non-

zero element (which is usually the unity element) are the positions of the

parlty-check digits. They correspoml to _he columns in which the unity

matrices 12's appear in the matrix of Equation (3.4). To _hese positions the

outputs of the accumlating adders are attached. These check digits, called

for by a synchronized switch, are included in the final code word output.

3-3 Syndrome Calculation of the Product Code with H = HIgH 2

The first step of decoding is to calculate the syndrome of the sequence

to be dec o_ed'. The syndrome calculator is similar to the main part of the

encoder. A syndrome calculator for the product code H = HIgH 2 is sh_n

in Fig. 3.4.
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input

,al

SyndromeH2
Calculator H

Syndrome

0 ou at 

Reset
&

Accumulating
Adder O_

Reset
& o

Accumulating l _'"Adder _

uA

O

Z

Reset _-

Accumulating I 1Adde r _ |

_____out_t

Fig. 3.4 An Syndrome Calculator for the Product Code H = HIgH 2

The interpretation of the functions of each block or box for Fig. 3.3 is

also applicable to Fig. 3.4. The syndrome recorder is either a buffer

circuit to store the syndrome for future uses or a switch which sends

out the "subsyndromes" out of each adder in a certain proper order.

3-_ Decoding of a Product Code H = HIgH 2 After Syndrome Calculation

A special feature of the product code with parlty-check matrix

H = HIgH 2 is that it may be conveniently used as an error-locating

code. Let H1 and H2 be rI x nI and r2 x n2 matrices respectively.

Then a whole code word of length nln2 can be divided into nI subblocks,

each of length n2. The parlty-check matrix H2 of the second component

code specifies the maximum detectable errors in each corrupted subblock.

The first component code parlty-check matrix H1 pinpoints the positions

of the erroneous subblocks without correcting the erroneous digits within

the subblocks.
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When the syndrome of any received sequence is not a vector with all

zero components or coordinates, there are some erroneous digits in the

received sequence. We will be able to locate the erroneous subblocks

from the calculated syndrome. Z_t _ be expressed as a single row

matrix, _emely,

= I_O _il _,---,_i_'ll

where _i is a primitive element of GF(_). Also let HI be the parity-

check matrix expressed as elements over GF(_), of a t-error-correcting

code_ then H = HIgH 2 is the t-subblock-error-locating code parity-check

matrix provided the umnber of erroneous digits in each corrupted subblock

does not exceed the error detectability of the second component code

with parity check matrix H2. The reason of error-locatability is as

follows: Suppose the received code word is divided into nI subblocks

each with length _, where nI is the code length of the first component

code and n2 that Of the second cc_nent code. Then any error-pattern

in any subblock which is detectable by _ will yield the non-zero

element _J as a syndrome. Hence if we consider each subblock as a

the

ti_ of the new syndrome (based on HI) of the sequence of n1 digits

(subblocks) will pinpoint the particular digits (subblocks) in error.

Yet us now consider the case where _ is a multiple-row matrix

with elements in GF(q):
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h_(_)h_) h_2)
•.. in2

_(_h_22 ... h

@

h(2)h(2) (2)
r21 r2 "'"hr_2

o

.nK.a..3p,..

(3.5)

Hence 3

H- Hl®m 2 - Hi®

-- 7

o

(3.6)

but

row space of HI_

Vhl_

o

2__J

= row space of

B

Hi®,hl,

Hi®_ hr2,
m

(3.7)

Hence

H

Hi@,hl,

Hi@,_,

Hi® Li_j

Equation (3.8) can be obtained from Equation (3.6) by row permntation.

Each submatrix Hi_ _ for i = 1,2,...,r 2 can be treated as the H

matrix of the previous paragraph. It should be borne in mind that in
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p__ _ e _z_ _ to]rotany detectableerrorpat_ ,e_the

in each subblock. In the present case it is possible that ,e, bi] = [0]

for some i and certain detectable error pattern _. However, there exists

at least one i such that _ hi] _ [0] for auy detectable error pattern

,e, in each subblock_ Otherwise we will have _e, _ = [0], which is

c_ntradlctory to the definition of detectable error pattern. We first

look at H (_,h_ to determine how mamy subblocks are in error. Then we

,...,
error pattern is detectable by the parity-check matrix H2 can be located

by at least one of the su_trices HI_._ 'for i = 1,2,3,...,r 2. The

decodlug procedure is nc_ su_m_zed as follows:

(i) Calculate the syndrome of the received code word

_o_ to t_ _ty_k _t_ H = Hl®_.

(2) zearraase the c_s of the _ In t_

followi_ manner

S_ S' ,

whe_

S=orlginelsynarc_

= IS 1 $2,'" ,St 2 _2+i $X_2+2"'" ,Sr2+r 2, eoo_

S(rl-l)r2+l S(zl-l)r2+2"'" 'Srlr21 ,

(3.9)

(3.1o)
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and

S' = rearremged new syndrome

i
I

I

S1 Sr2+l S2r2+l,"',S(rl-l)r2+l ,
!

I I

S2 %+2 _2r2+2,'-',S(rl-l)r2+2, ...'I I
i l

Sr2 S2r2' •..,Srlr2]

;oe.; ;oee_ ;
(3.11)

whe re

[Sbi= si Sr_+i,'-•,S(rl_l)r2+l ]
(3._)

for i = 1,2,...,r2,

i.e., Sbi is the syndrome obtained from HI

(3) Evaluate the erroneous digit positions of the first

component code with the parlty-check matrix H1 by

! I s
assigning _i as its syndromes for all i's.

(4) Identify the digit positions of the component code

H1 with the subblock positions of the product code.

For the case of binary product codes with parlty-check matrix

H = HI_ _, the decoding procedures become much simpler. No

rearrangement of the syndrome components is required in this case.

Let us divide the original syndrome S in the following manner:
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S ._ _,'",Sr2'_2+ _2 'Sr2+_2' 'S1 _ 1 +2' """
a J

! -,, |

! i J

S(ri-z)r2+1S(rz-x)rz_,---,anr2]

where

S(i-l)r2+l S(i-l)r2+2,-- ",S(i-l)r2+r2] for i = 1,2,...,r I. (3.z4)

Let us define a mapping by

if S(i_l)r2+ k = 0 for k = 1,2,...,r 2 }

if there exists at least one S(i.l)r2+k = I

For example, let r2 = 3, rl= 7 and

S ! ! ! ! ! t -1010 I 000 II011 ! iii ; 000 ! 001 i 000 ]| I ! | I l
0 IJ 0 e, | |

then

:[ooo]= o

:[ooo] o



Let SHI denote the syndrome obtained from S by mapping Sal into either

0 or i. Treat SHI as the syndrome of the first component code.

We can then evaluate the erroneous digit positions of the first

•component code which correspond to the corrupted subblocks:

3.5 Encoding by the Generator Matrix G

It is well known that the rows of the generator matrix G of a

linear code are nothing but a set of the basis vectors of the code space.

Any code word of the code space can be expressed as a linear combination

of the basis vectors. Therefore, the encoder can be constructed as

shown in Fig. 3-5, where vI, v2,...,vk are prestored row vectors of the

generator matrix G. G1, G2,... ,Gk are gated amplifiers whose gains are

controlled bythe input information sequence. T1, T2,...,Tk_ 1 are the

proper delay units so that all the prestored row' vectors, each of them

multiplied by a value depending on the input sequence, are fed sim_l-

tameously into the adder over GF(q). Symbolically Fig. 3-5 may be

represented as in Fig. 3-6.

Prestored Basis

input.

(information

digits)

Vector

I vl III'
l

Ii " J.l

Gate Amplifiers

f

o

Delay Units

_

adder

over

GF(q)

-_- output

Fig. 3.5 Encoder with Specified Generator Matrix G
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I.put _ EncoderO.format ion D

'K__ut put
, G I Ccodewo. O

Fig. 3.6 Symbolic Representation of an Encoder with

Specified Generator Matrix G

3.6 _coding of a Prod-act Code _th GeneBtor Matrix G = G1 $ @2

Fig. 3.7 is the encoder for a product code with generator matrix

G - Gl_ G2 if the first component code is systematic. Let

G1 = [P1 Ikl] ,
(3.16)

then

G=GI_G2 =[P1 Ikl]_G2

P2(_G2

I
i

1
!
!
J

1

%

o

G2

q

(3.17)

Among the first kI subblocks, the information digits are distributed

evenly in each subblock and the encoder G2 fills the parity-check digits

for that subblock. All the first digits of subblocks k1 + l, k1 + 2,

... ,nI - l, nI are the parity-check digits given by encoder G1 with all

the first digits of each of the first k1 subblocks as inform_tlom digits.

The rest digits of each of the last nI - k1 subblocks are obtained in a
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similar manner. Therefore, the encoder shown in Fig. 3-7 is the proper

circuit for encode. If the first component code is not systematic,

some rearrangement of the ordering of the switches shown in Fig. 3.7

is necessary, but the rest of the circuit will remain uncha_ed.

I
input _I Encoder G2

(information digits )
!

J r- _ I

_--output
(codewords)

____]_ Encoder GI I_
_ _ Encoder GI

_ EncoderGl ] _

Fig. 3.7 The Encoder for a Product Code with Generator

Matrix G = GI _ G8

3.7 Syndrome Calculation of a Product Code with G = GIQG 2

By Theorem 2.6 and Corollary 2.6.1 of Chapter II, the parlty-check

matrix H of the product code whose generator matrix G = GIQG 2 can be

expressed as either

E= HI® (3.18)
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or

H

The row vectors of Equation (3.18) are linearly independent. Hence they

fora a set of basis vectors of the _ space of the code space. Equation

(3.19), however, gives a form which leads to a most convenient way of

decoding the product code. Even though the row vectors are not all

linearly independent, the union of these vectors (with overlapping of

rlr 2 rows) do generate the whole null space of the code space. The

decoding scheme discussed in this and the following sections will be

based entirely on Equation (3.19).

It can be easily seen that the _j_l__r_ calculation of

b ®N
can be accomplished by implementing two parallel but separate syodrome

calculators, one for Inl_H 2 and the other for HI_ In2 • The results

of Section 3.3 can be applied directly here to find the syndrome.

Fig. 3.8 shows the complete circuit for syndrome calculs_ion. As in

Section 3-3, the inputs to the scalar msltiplier, aI a23... ,ar_ are

cont_L_d _y K1.

(3.z9)

(3.20)
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input

(received vector)

{Syndrome

Calculator

Syndromei_

I _ou_t°ri

I S_r_
o_u_to;_-

_I S_r'T L0 ou  tor i

o_
o
O

cd

O
Of

Z

_q

_output

(syndrome)

Fig. 3.8 Syndrome Calculator for the Product Code

with G = Gl_G 2

3.8 Decoding of a Pro_uot Code G = GIG G2 After a S_rom_-Calculat_on

Let the first c_mponent code be a tl-error-correcting code and the

second one a t2-error-correcting code. The minimum distances of the

former and the latter are assumed respectively to be d = 2tI + 1 and

d2 - 2t2 + 1. It cam be shown* that the minimum distance d of the

product code with generator matrix G = Gl_ G2 is equal to the product

of the minimum distances of its components.

*See Reference 2, Chapter 5, Theorem 5.3.
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The,

d = dl_

= (_1 + i)(_ + I)

= _tl_ + 2(t I + t2) + 1.

_refore, the product code can either detect 4tlt 2 + 2(t I + t2) _cm

errors or correct au_ error pattern containing _k_ = 2tlt 2 + tl + t2

or f£_-e_ ea-_ors.

The procedure for error detection is simple. If the output of the

syndrome calculator is an all-zero sequence, the received sequence is

considered error-free, otherwise there are _tlt2 + 2(tl+ t2) or fewer

errors in the sequence. An alarm ms_ be se_ off or a request for

retransmissic_ may be made if a feedbac_ channel is available.

The error-correcting procedure is far more complicated. In the

cases of non-bina_ codes it is necessary to em_loy a systematic searching

technique for correcting certain error patterns. We first illustrate

the decoding steps for the binary product codes, to be followed by a

description of necessary modification in decoding non-binary codes.

Let GI, HI be the generator and parity-check matrices, respectively,

of the binary code CI with kI information digits in each coda block nI.

The m_n_,._ distance of code CI is dI = 2t I + i, hence it is capable of

cor__ tz r=_ e_. U2, _, _, _, _ _ t2 _ de_

similarly for the binary code C2. If we _orm the tensor product code

C whose generator matrix G = GI_G2, by Corollary 2.6.1, we have the

parity-check matrix

L"

(3.2z)

(3._)
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As mentioned earlier, the minimum distance is

d = dld 2 = 4tlt 2 + 2(t I + t2) + 1. (3.23)

Hence the product code is capable of correcting

t = d-1 _ 2tlt 2 + tl + t2
2

random errors.

Each received code block contains nln 2 binary digits•

to arrange these digits in an nI × n2 array as follows:

It is convenient

nl (
rows

al a2 a 3 • . .

%+1 %÷2 %+3 " " "

a2n2+l a2n2+2 a2n2+3 • . . a3n 2

a(i-1)n2+l a(t-1)r_2+2 a(i-1)n2+3 • . . ain 2

a(nl-1)n2+l a(nl-1)n2+2 a(nl-1)n2+3 • . . anln, 2

n2 columns

By investigating the parity-check matrix and the above array, it is

clear that each row of the array should satisfy the parlty-check matrix

H2 of the second component code C2 and thus be a code word of C2.

Similarly, each column of the array should be a code word of the first

c_mponent code C1.
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The detailed decoding procedure is as follows:

Step2

Step6

7

Arrange the received sequence in an array as

ahcwn in the previous paragraph.

Correct errors in each row by the parity-check

Correct errors in each col_mmby the parity-check

matrix H1.

Correct the remaining errors again in each row

by the parity-check matrix H2.

Fee_the corrected _quence into the syndrome

calculator. If thenew syndrome is an all zero

sequence, go to Step 6; otherwise go to Step 7-

Compare the received sequence with the corrected

sequence. If the number of errors corrected is less

than or equal to t = 2tlt 2 + tI + t2, the procedure

is completed and +.he errors are assumed to have been

corrected; otherwise go to Step 7-

Repeat Steps 2 - 6, but perform column checks

before row checks, then column checks again.

If the test of Step 6 is satisfied, then all

the errors are assumed to have been corrected;

otherwise go to Step 8.



Step 8

St p9

Step i0

Use HI and He respectively as the parlty-check

matrices of 2t I - and 2t2 - error detecting codes

to detect all the rows and columns which are in

error.

Complement all the digits at the intersections

of the erroneous rows and columns. Then repeat

Steps 2 to 7. Compare the corrected sequence

with the received sequence. If the number of

errors is less than t, stop the procedure;

otherwise go to Step lO.

Auxiliary decoding schemes are necessary to correct

all the error patterns which are not corrigible by

the procedure of the previous 9 steps. These

should be designed according to certain properties

of the code. These error patterns which are, in

general, a very small fraction of the total number

of the corrigible error patterns.

It is convenient to explain the reasons behind the above lO steps

by an example. Let tI = t2 = 2, then t = 2tlt 2 + tI + t2 = 12. The

following cases are handled separately.

(i) If the number of errors in each row and each column

is always less than 3, then either the row checks

or the column checks are sufficient to correct

all the errors. Hence this is a trivial case.

-66-



(ll) The error p_tterm of 12 errors is of the form:

X X X X

X X

X x

X X X

X

(tI = 2, or fewer rows comtalm more thsm t2 = 2 errors).

Applying rmr checks, we may "transform" the error

pattern to the form shows in the following:

-X X X X

A
× x

where _ denotes the position where am _rror is

corrected by the row checks, a_d _ denotes the

position where am extra error is Imtro_uced by

wrong correc_iom Based o_ the row checks.

Applylmg col_m checks next, we obtain

& &

which completes 1;he correction of all 12 errors.
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(iii) The error pat_rn of 12 errors is of the form

X

X

X

X

X X X

X X x

X X

(t2 = 2, or fewer columns contain more thau

t I = 2 errors). Applying row checks, we have

/_ X

A
x

X X X

X × X

"X X o

Applying column checks, we have

_ x _ C] x

A

_i x_ ×

I_ [3,

Applying row checks again, we obtain

@ ©
mOmO0

_ 0 0
© @ m

which completes the correction of all 12 errors°
J
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(iv) The error pattern is of the form

X X X X

X X X

X X X

X X

(t2 = 2, or fewer col_mms contain more than t ! = 2

errors). Applying row checks, we have

X X X X

×

Applyimg column checks, we have

×_

X X

A

X X X

× ×&
&&×

A

We then count the "corrected" errors. There are 16 in number, hence

we know that this is not the right error pattern. The c9rrecting procedure

is started all over again with column checks first as:
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(v)

Original error pattern

X X X X

X X X

X X X

X X

Column checks

Row checks

×U 0 ×

G× ×

X >."

F_l []

/_ r] r] A

E]A A

A A

A A
which succeeds In correcting all 12 errors.

The error pattern (of 12 errors) is of the form

X X X

X X x

X X X

X X X

Apply either row checks first or column checks first.

The "corrected" sequence will differ from the
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(iv)

original received sequence for more than 12 positions.

Therefore, we go to Step 8 and detect all the rc_s

and columns which are in error. By counting them,

we _now that there are four rows and four columns in

error. According to Step 9, we complement all the

digits at the intersections of the erroneous rows

and columns. The new error pattern becomes

_JJ, Y, ,- x

I • f • /"

,,;X /, ._

where ,_ denotes the position which was in error

before complementing. It is evident that the

complemente_ errors can be easily corrected by

either row or column checks.

The only error patterns which cannot be corrected

by Steps 2 through 9, are some permutations of

columns aud/or rows of the following two patterns:

X X

X X X

X X X

X X X

X

X X X

x X x

x x x

x

X

X
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The pattern on the right is obtained from that

on the left by a 90o rotation. Hence, only the

left-hand side pattern needs to be considered in

the following discussion.

It should be noted that, for this error pattern, the complements

of the digits at the intersections of erroneous rows and columns form a

mirror image of the original error pattern as follows :

X

Original Pattern

X X X

X X X

X X X

X X

Complemented Pattern

X X X

X X X

X X X

X X X

The method of complimentation fails due to the fact that there are an equal

number of correct and erroneous digits at the intersections of those rows

and columns. Therefore, it is necessary to break this "balanced" situation

of correct and incorrect positions. One way of doing it is to change an

odd number of aribtrarily chosen digits among these intersections. Then

the number of correct digits and that of erroneous digits will differ at

least by one. Let us take the smallest odd number, l, and proceed with

the correction procedure as follows:

The original pattern is repeated here for reference.

X X X
i

X X

X X

X X

X

X

X
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If the assumedsingle error is _mcng one of the erroneous digits,

then the new l_ttern is

X X X

X X X

i_..' X X

X X X

where '_._:denotes the origi_ erroneous position which was corrected by

the trial-aud-error method. The above pattern can be easily corrected by

applying column checks first, followed by the row checks.

If the assumed single error is not among one of the erroneous digits,

then an additional error is introduced, the new pattern becomes

X

X X X

I !
,_X.I X X X

X X X

X X
i

where ;X_ is the newly introduced error by the method of trial-a_-error.

Because of this additional error, any row checks _ column checks cannot

completely correct the error pattern, no matter which one is applied first.

We then complement the whole matrix and obtain the new pattern as foll_s:

X X X

X X

X X X

X X X
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This error pattern can be corrected easily by applying column checks

followed by row checks.

At the end of each correcting procedure we should count the number of

positions changed to vindicate whether the corrected "errors" are real

errors. Suppose there are e errors in a received sequence and e_ t.

It is well known that the minimum distance d of a t-error-correcting

code is given by d _ 2t + 1. Hence in dealing with a received sequence

with e errors, two possible situation may occur: we may either correct

all the errors, or add some other erroneous digits together with the

original received errors to form a code word which satisfies both the

row checks and the column checks. In order to form a code word which is

d or more digits distant from the true code word, a weight of no less

than d-e(_ t+l) must be added to the original error pattern. Therefore,

at the end of each correction procedure, if it is found that the number

of errors corrected is less than t, the corrected code word is the true

code word. An alternate decoding scheme should be used if this number

exceeds t.

In Steps 8 and 9, we have assumed that among the possibly erroneous

positions, either more than half are in error, or the pattern of the

correct positions is such that if it were an error pattern it could be

easily corrected by the row and column checks. Hence, after detecting

the error locations, we take the complement of these possibly erroneous

digits and proceed to correct all the errors in the complemented pattern

Of the original errors.

The auxiliary decoding scheme cited in Step lO and the illustration in

the example varies from code to code depending upon some special properties



of the codes and the error l_tteras.

It should be noted that Steps 8 and 9 do not apply to non-blnary

codes. Complementing in a non-blnary field will not, in general,

eliminate the original error patters but will introduce new errors.

Hence either a trial-and-error technique should be used, or a new a_udliary

decoding scheme should be adopted for the non-binary codes.

The main advantage of the tensor product code is that one may employ

the error-correction capabilities of the component codes to correct the

errors in the product space. The design involved in the repetitive proce-

dure of the component code is usually simpler than that required to correct

a larger number of errors by means of a single code. Take as an example

the product code C (49,16), which is a tensor product of two cyclic (7,4)

codes C1 and C2. The (49,16) code is capable of correcting 4 errors.

Were it not a product code, a single 4 error-correction code would require

solving 4 simultaneous equations in a binary extension field. Now, as a

product code, it requires only the application of single error-correcting

procedure to rows and columns of 7 digits each which does not involve the

calculation in any of the extension fields. A saving in the decoding

procedure results.

3-9 Encoding of a Product Code with Parity-Check Matrix H = [Hlq(_H2q] p

Since H = [Hlq_H_q] p is a p-ary representation of [Hlq_H2q] ;

the syndrome obtained from H sh_Lld be the syadrom_ derivable from

by tr=szatlon 0F(q)to GF(p).

Because of the complexity of the decoding procedure in higher

extension fields, we shall assume that _q is a i X m2 matrix. The
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encoding procedure can be described as follows:

(i) Fill the checking digit positions with zeros.

(ii) Divide the entire sequence, including the

information digits and the all-zero checking

digits, into nI subblocks with n2 digits in

each subblocks •

(iii) Separately feed each subblock into a syndrome

calculator with parlty-check matrix [H2q] p.

(iv) Interpret the syndrome of each subblock as a

q-ary digit. Then feed these nI q-ary digits

into a syndrome calculator with parity-check

matrix Hlq.

(v) _ Interpret the syndrome output of the calculator

with matrix Hlq in terms of its p-ary representation.

Then add the p-ary representation of each q-ary

digit to its corresponding positions which were

filled with zeros before.

The encoding circuit is shown in Fig. 3-9.

(information

digits)

Syndrome I I p-ary ] ISYndrome _ I q-ary I

Calchlator _ to _ CalculatC_J to
q-ary p-ary '

1 [H2q]P 1 IConvert-_ l H1q IL IConvert,r] 1

_ Buffer i __ output

(code words)

Fig. 3.9 Encoder for the Product Code with H = [Hlq(_ H2q] p
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3- i0 Decoding of a Product Cede with Parity-Check Matrix H = [Hlq(_)H2q] p

The syndrome calculator of a product code is very similar to the

encoder of the code. Fig. 3-i0 is a block diagram of the syndrome

calculator

input

(received

vector)

Calculator
p-ary
to

q-ary
Convertor

Calculator

Hlq

output

Fig. 3.10 Syndrome Calculator for the Product Code

The output of the syndrome calculator should be given as vectors with

components in GF(q). With this syndrome, we determine the location of

erroneous subblocks. In locating the errors, we go through the error

correcting procedure for the q-ary component code with parity-check

matrix Hlq up to the point of determining the error location. It is

not necessary to evaluate the exact error pattern within each erroneous

subblock, since the product code is employed as an error-locatlng code.

3.ii Remarks

Let us first compare the decoding procedure of a product code

whose parity-check matrix is H - Hl_ _ with that of a product code

specified by the parity-check matrix H' = [Hlq(_)H2q] P in the following

table:
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Parity-Check Matrix H1 _ H2 [Hlq @ H2q ]p

Number of rows of

second parlty-check
matrix

Data transmission rate

Total number of code

words

Fields translation

Implementation

P

Lo_er

Smaller

No

Less complex

i in q-ary expanded

to p_in p-ary

Higher

Larger

Yes

More complex

The choice of produce codes with H = HIgH 2 and H = [Hlq(_H2q] p

depends on the complexity of circuits allowed and the number of code

words required. For the same code word length and same redundancy,

one has to pay the price of employing more complicated circuits in

order to have a larger code word space.

In the previous sections, we have considered the product code whose

parlty-check ma_rlx is the tensor product of tae check matrices of two

component codes as an error-locating code. However, the code can also

achieve some other functions. Let the first component code have a

minimum distance of dI = 2t I + 1. It is capable of correcting tI or

fewer random or independent errors. Let the minimum distance of the

second component code be d2 = 2t2 + 1. Then the product code is

capable of performing any one of the following functions.

(i)

(il)

(ill)

Detecting min(2tl, 2_c2) random errors.

Correcting min(tl, t2) random errors.

Detecting 2tI corrupted subblocks, each of

which containing no more than 2t2 errors.
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(iv) Locating tI corrupted subblocks, each of

which containing no more than 2t2 errors.

(v) Correcting tI corrupted subblocks, each of

which contains no more thah_ t2_errors_

It should be noted that the product code of the type H = Hl_H 2 as well as

that of the type H' = [Hlq_H2q] p can perform amy one of the above 5 functions.

The bounds given in (i) stud (ii) are due to the fact that the m_n1_

distance d of this product code H = Hl_H 2 is min(dl, d2) , a property to

be further exsmlmed in Chapter 6. It is evident that this kind of product

code is not particularly suited for random-error correction or random.error

detection becs_se of its relatively small _In_, distance. It seems that

the m_,_.,_ distance is not always the best criterion for judging the utility

of a code becs_se there are occasions when the knowledge ab_at the relation

between the error patterns and the subblock structures is important.

The product code whose generator matrix is the tensor product of

the generator matrices of its component codes has also an interesting

alternative error-control capability. Since the parlty-check matrix of

this product code is given as

the upper submatrix Hl@_

H

can be considered as the parity-check matrix

which is capable of locating tI subblocks (assuming HI is the parity-

check matrix of a tl-error-correcting code) with each of them containing
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no more than n2-1 errors. This is due to the fact that In2 is the parity-

check matrix of a code whose minimum distance is n2. The lower submatrlx

n1-1

Inl_HOv_ is capable of locating up to _ corrupted subblocksj each2

containing no more than 2t2 errors (assuming H2 is the parity-check matrix

of a 2t2-error-detectlng code). Therefore, we can employ this product code

to locate errors distributed in the following two ways :

(1) Errors are clustered in no more than tI random

subblocks with at least one correct digit in

each.

nl-1
(ii) Errors are distributed in T subblocks,

each containing no more than 2t2 errors.

Hl_l_2 and Inl_H 2 can be considered as the parity-check matrices

of the codes whose functions are listed under the discussion of error-

locating codes of this section. A meaningful combination of them is that

the product code is capable of

(1) correcting tI subblocks containing n2-1 or
2

fewer errors,

(ll) locating nl----_1 subblocks containing 2t2 or fewer
2

errors.

Another useful application of the product code specified by

G = GIQG 2 over GF(q) is to correct, by simple procedures described in

Section 3.8, Step i - 8, all the following four kinds of error patterns:

(1) fewer than t2 + 1 errors in each row,

(ii) fewer than tI + 1 errors in each column,

(ill) no more than tI rows contain more than t2 errors,
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e, e

(iv) no more than t2 columns contain more than tI errors.

The receiver will ask for retransmission or locate the errors whenever the

error patterns do not belong to an_ of the above four categories. It

should be noted that the above four kinds of error patterns occupy a

very large fraction of total corrigible error patterns.
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CHAPTER4

IMPLANTING PRODUCTCODESWITHDUALCYCLICCOMPONENTCODES

The ease wlth which cyclic codes can be implemented and the results

of the last chapter showing that the encoding and decoding of a product

code can be decomposedInto those of its componentcodes lead to the

conclusion that productcodes with cyclic componentcodes should be

relatively easy to realize. This chapter is devoted to studying the

implementation of the encoders and syndromecalculators of the product

codes with cyclic componentcodes. A cyclic decoding schemeof the

cyclic codes after obtaining the syndromeswill be discussed in Chapter 5.

First, the implementation of cyclic codes by shift-registers is

reviewed, then dual cyclic codes are studied. Next, the encoding and

syndromecalculations of product codes with cyclic componentcodes are

shown. Finally, the problem of implementing product codes wlth dual

cyclic componentcodes is investigated. The hlgh degree of flexibility

in redundancy possessedby the product codes with dual componentcodes

is very attractive In applications such as space-vehicle-to-ground

communications.

4.1 Cyclic Codes 2

A subspace V of n-tuples over GF(q) is called a cyclic subspace

or a cyclic code if for each vector ._,= (ao, al,..., an-l) in V,

the vector Lf'.= (an_l, aO, al,..., an_ 2) obtained by shifting the

components of ._,cyclically one unit to the right is also in V.

Corresponding to each n-tuple (aO, al,..., an_ l) there is a polynomial

of degree less than n, f(x) _ a0 + alX + ... + an_lxn-1, mod xn-1.
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Let g(x) be a manic polynomial* of degree r which divides xn-l. Then an

n-tuple is a code word of the cyclic code V if and only if its corresponding

polynomial f(x) is divisible by g(x). A cyclic code is, therefore,

specified completely by a polynomial g(x) that divides xn-l, and it is

said that the cyclic code is generated by g(x). Alternately, the code

can be specified by its recursion polynomial h(x) = (xn-1)/g(x).

4.2 Encodln S for a Systematic (n_k) Cyclic Code**

Encoding for the systematic (n,k) cyclic code generated by g(x),

a polynomial of degree n-k, can be accomplished by using a device called

a shift-register generator as shown in Fig. 4.1, with connections

corresponding to

h(x) -- (xn-1)/g(x) --h0 + hlX + _ + ... + hk_2X k-2 + hk_l xk-1 + xk

) i

(c°a,, W°,a,)

)

)

Fig. 4.1 A Shift-Register Generator for Encoding the (n,k) Code

Employing k Shift-Register Stages

*A polynomial f(x) is called monic if the coefficient of the highest
power of x is 1.

**Peterson 2 Chapter 7-
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The gate is open during the period of feeding in the k information digits.

The device is made to shift n times immediately after all the information

digits are fed in. The gate is closed during the first n-k shifts, then

opened again for the last k shifts in order to clear out all the shift-

registers. The first k symbols to come out will be the information

symbols, and the last n-k symbols will be a set of check symbols that

make the whole n-tuple a code vector. Fig. 4.2 is a modification of

Fig. 4.1 in which the constant delay of k digits is eliminated.

Fig. 4.2 An Encoder for the *n,k) Cyclic Code Employing k

Shift-Register Stages

The gate is open for the first k shifts, and closed for the last n-k

shifts. The switch k is at position 1 for the first k shifts then set

to position 2 for the last n-k checking symbols.
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Example

For the (7,4) binary code, g(x) = 1 + x + x3 and

h(x) = (x7+l)/g(x) = 1 +x + x2 + x4. The shift-

register shown in Fig. 4.3 can be used for encoding.

Input _ I

Fig. 4.3 Shift-Register for Encoding the (7,4) Code

Let fo(x) be a polynomial in which the k coefficients of terms involving

xn-1, xn-2 n-k, •.., x are arbitrary information symbols, and the

coefficients of terms of degree less than n-k are O. This corresponds

to a vector for which the first n-k components are O. The last k

components are arbitrary information symbols. Then by the division

algorithm:

fo(X)= g(x)q(x)+ r(x), (4.1)

where r(x) has degree less than n-k, the degree of g(x). Then

fo(x) - r(x) = g(x) q(x). (4.2)

Hence the n-tuple corresponding to fo(x) - r(x) is a code vector for

which the first n-k components are checking digits, the last k components

arbitrary information symbols. Therefore, the encoding for an (n,k) code
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can also be achieved by a divider shown in Fig. 4.4, with connections

xn-k-1 xn-k°
corresponding to g(x) = go + glx + "'' + gn-k-1 +

Fig. 4.4 A Divider as the Encoder for a Cyclic (n,k) Code

Employing n-k Shift-Registers

The input sequence is fed into both the divider and the buffer which

is used to store the sequence for a duration of n-k units of time. The

gate is originally open and closes when all the information digits are

fed into the divider. It opens again n-k shifts after the last informatlon

digit is sent into the divider so that all the storage units in the

divider will be cleared out and they be ready for a new information

sequence. The output takes information digits from the buffer and

checking digits from the divider. The buffer of Fig. 4.4 can be removed

by multiplying the information sequence by the factor xn-k before feeding

it into the divider. This can be achieved by introducing the information

sequence at the output of the (n-k)th shift register, as shown in Fig. 4.5.
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Input

Fig. 4.5 A Divider as the Encoder for a Cyclic (n,k) Code

Without Buffer Stage

The gate is closed during the feeding in of information digits. It is

opened immediately after all the information digits have been fed into

the divider. In this chapter, for the purpos_ of facillating the

implementation of dual codes, an equivalent circuit of Fig. 4.5 is

used as the encoder for the (n,k) code which is shown in Fig. 4.6.

l:_ p_t

O t .t

Fig. 4.6 An Equivalent Circuit for Fig. 4.5
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The gate is closed during the first k digits and open for the last n-k

digit s•

Example

For the (7,4) binary cyclic code, g(x) = I + x + x3,

the encoding circuit styled after Fig. 4.6 is shown

in Fig. 4.7.

I.p.t

Fig. 4.7 An Encoder for (7,4) Code

4.3 Syndrome Calculatin_ for a Systematic (n_k) Cyclic Code

Let _r = (ro, rl, r2,... , rn_l) be a received vector.

corresponding polynomial r(x) for ,r_ is

The

r(x) = rn_l xn-1 + rn_2X n-2 + ... + rn.k xn-k + ... + r2x 2 + rlx + r 0 •

Let

fo(x) = rn_l xn-1 + rn_2X n-2 + ... + rn.k xn-k

be the polynomial whose first k coefficients are identical to those of

r(x) and whose last n-k coefficients are zeros. Then

fo( ) = g(x) + r'(x), (4.3)

where g(x) is the generator polynomial of degree n-k for an (n,k) cyclic
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code, q(x) is the quotient polynomial, and r'(x) is the remainder whose

degree is < n-k. It can be easily seen that

(X) = f0(x) - r'(x) (4.4)

is a po!_omia! whose first k coefficients are id_n_%_l to r(x), thus

the corresponding vector ,f. of f(x) is a code word. It can also be

shown that the syndrome _ for the received vector .r. is given as

,s. O0 ... 0 =,r,- f_f__,
I I

(4.5)

or in polynomial form

s(x) = r(x) - f(x). (4.6)

Hence the encoder shown in Fig. 4. i cam be modified to be the syndrome

calculator as shown in Fig. 4.8.

'

F

C)

I.p.t

I

Fig. 4.8 A Syndrome Calculator for an (n,k) Cyclic Code,

a Modification of Fig. 4.i
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Gate i is opened for the first k digits, closed for the next n-k digits,

then opened again for the last k digits. Gate 2 is closed for the first

k digits and opened for the rest of the n digits. The buffer serves to

delay the input for k digits. The first k digits of the input sequence

,r, are fed into the encoder to generate the code word ,f, • This is

then subtracted from the input sequence _r to form _ . Here the

first k zero components are deleted by the action of gate 3.

Since the first k digits of r(x) and those of f(x) are identical,

we can ignore them completely without going through the trouble of

subtracting the latter from the former. Hence Fig. 4.8 can be simplified

further as shown in Fig. 4.9.

J

Input O tp t

(Syndrome)

Fig. 4.9 An Equivalent Circuit for Fig. 4.8

The gate in Fig. 4.9 is the same as Gate 1 in Fig. 4.8. Switch K is at

position 1 for the first k digits and at position 2 for the next n-k

digits, and no buffer is requi_ed.
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let the polynomial r(x) corresponding to the received sequence ru_

be split as follows:

r(x) = f0(x) + rO(x),

whe re

fo(X) = rn_lxn-1 + rn__xn-2 + + rn kxn-k@oe _

ixn-k-1 2xn-k-2r0(x) = rn_ k_ + rn_k_ + ... + rlx + r0 •

Then

_ ro(x)r(x) fo(x)+
g(x)g(x) g(x)

where the degree rO(x ) < degree g(x).

let

fo(X) = qO(x) g(x) + r'(x).

It can be shown that the syndrome is

s(X) = r'(x) + r0(x).

Therefore, Fig. 4.6 can be modified to be the syndrome calculator as

shown in Fig. A.10. Switch K is at position 1 for the first k digit,

then is shifted to position 2 for the last n-k digits. Gate 1 is

closed for the first k digits only, and Gate 2 is closed for the last

n-k digits only.

Since the encoder and the syndrome calculator of a systematic

(n_k) cyclic code can be implemented by shlft-registers with connections

corresponding to either its generator polynomial g(x) or its recursion

polynomial h(x), it is possible to implement the encoding and syndrome

calculation for a cyclic code by a circuit and its dual. This will be

(4.7)

(4.9)

($.10)

(_.ii)

(4.13)
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the subject of discussion in the next section.

v ao,) I

)<-)<

.eJ

Fig. 4.10 Syndrome Calculator Obtained by Modifying Fig. 4.6

4.4 Cyclic Dual Codes as Variable Redundancy Codes*

Let g(x) of degree n-k be the generator polynomial of an (n,k) cyclic

code C and h(x) = (xn-1)/g(x) be the recursion polynomial. Then the code

C' with generator polynomial h(x) and recursion polynomial g(x) is called

the dual code of code C. Or code C and code C' are dual to each other.

By combining Figs. 4.1, 4.6, 4.9, and 4.10, we are able to implement

a circuit which is an (n,k) cyclic code at one time and the dual of the

(n,k) code or a (n,n-k) code at another time if a mode-chainging signal

is given. Since the redundancy of the two modes is different we may use

dual codes as variable redundancy codes. Fig. 4.11 shows the encoding

and syndrome-calculating circuit for the variable redundancy code. The

timing for the switches is listed as follows:

*See Tang, Reference 4.
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Mode I: The code is generated by g(x)

Encoder

0+ _kT-

K_

kT+ -*_T-

El a a

_2 i 2

z 2
a

Syndrome Calculator

Time 0+ + tD _ kT- + tD

Kll

kT ÷ + tD _nT- + tD

a a

z 2

z 2

Klo 2 1

a

where T is the digit duration,

iT+ is the beginning time of the ith digit,

iT" is the instant Just before the beginning time of the ith digit,

and tD is the delay time required to transmit the signal from the encoder

to the syndrome calculator.
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Fig. 4.11 Encoder and Syndrome Calculator for Dual Cyclic Codes
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Mode 2: The code is generated by h(x)

Encoder

0+ -_ kT" k_ + -_ D_T-

K1 b b

K2 2 z

K4 b b

i 2

Syndrome Calculator

_. Time 0+ + tD -_ kT- + tD

51

kT+ + tD

K6 b b

K6 l 2

K9 2 i

b b

-_ nT-+t D

Fig. 4.ii can be represented in block diagram manner by Fig. 4.12.

Input =
Er, C oc{et-

I

Ch_nne. I

Fig. 4.12. A Block Diagram Representation of Fig. 4.11
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When all the switches are at position a, the system is in mode 1. In

this case the polynomial g(x) is the generator polynomial of the code.

When all the switches are at position b, the system is in mode 2. The

code is now generated by the polynomial h(x) = (xn-1)/g(x).

4.5 Encoding of a Cyclic - Component Product Code with Parity-Check

Matrix H = Hl_H 2

Let gl(x) = gl0 + gllx + gl2x2 + "'" + gl(rl-1) xrl-1 + xrl be the

generator polynomial of the first cyclic component code C1 with parity

H1. Let g2(x) --g20 + g20x + "'" + g2(r2-1) xr2-1 +
xr2check matrix

be the second cyclic component code C2 with check matrix H2. Then

Fig. 3.3 of Chapter 3 can be replaced by Fig. 4.13. It should be noted

that the accumulating adders over GF(q) do not appear in Fig. 4.13, since

their functions are performed by the dividers. Each divider has a period

of r_2,the length of the second component. Therefore, whatever is appearing

at the shlft-reglsters now will reappear n2 shifts later provided there is

no input. In the case of an input, what appear at the shift-registers n2

shifts later is their original content plus the shifted version of the input

which arrived in the interval of r_2 shifts, since the circuit is linear.

The gate of each divider is always closed except during the interval when

the remainder is shifted out to become the check digits. The multiplier

controlling signals al, s_2,..., ar2 are the output6taken at proper points

shown in Fig. 4.14 with (1,0,O,...,O) as the initial state, where

gl( * * * r_-i
x) _ glO + gll x + "'" + gl(rl-l) x _ + xr_ is the reciprocal poly-

nomial of gl(x). It should be noted that the clock frequency of Fig. 4.14



I,p_t

(I_{o,._t;,.

¢':yt _)

(

D

i 2

o

_ o_tr_t
(code _o,d )

Fig. 4.13 Encoder for the Cyclic-Component Product Code with

Parity-Check Matrix H = H1 @ H_

S is at i for the duration of information digits, at 2 for the

duration of check diglts.
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is i/n 2 of the clock frequency of Fig. 4.13. Fig. 4.14 can be replaced

by other storage devices or timing circuits.

at, a_,_r a, a,

Fig. $.14 Multiplier Controlling Signals

As far as economy of the circuitry is concerned, Fig. 4.13 is best

for encoding the cyclic-component product code with parity-check matrix

H = Hl_H 2 , since no buffer stages and no accumulating adder over GF(q)

are required, and there is no delay. But, unfortunately the flexibility

of code word redundancy of a product code using Fig. 4.13 as encoder is

limited. We can only change the first component code with parity-check

matrix H 1 by varying the number of multipliers rl, whereas we can do

nothing about the second component code with parity-check matrix H2.

Therefore, we shall develop some alternative encoding circuits for

use in later sections, such as those shown in Figs. 4.15 and 4.16.
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Fig. 4.15 An Encoder for the Cyclic-Component Code with

Parlty-Check Matrix H = H1 _H 2

K's are at position i for the first k2 digits for each subblock and

at position 2 for the last n 2 - k2 digits. S is at position i for

information digits and position 2 for check digits.
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InF_t

<

<

____<

Fig. L_.16

,!,-

An Encoder for the Cyclic-Component Code

with Parity-Check Matrix H = HIgH 2

Timing for K's and S are specified in Fig. 4.15.
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There are several ways to implement the accumulating adders over

GF(q) shownin Figs. 4.15 and 4.16. Since shift-registers are widely

used for the encoding and decoding circuits for the cyclic codes,

Fig. 4.17 suggests a way to achieve the accumulating adder by employing

shift-registers, toO, ml, . .., mr2_l , and i are coefficients of a

+ whichpol_al re(x)- _ + mI + _x2 + ...+ mr2_ixrl'l x_

generates a rec_sive sequence of period n2. Switch k is at position

2 _st of the time except while output is being taken frem the adder.

It can be easily seen that if the input sequences at to, and tO + n2T

are (so, al, _2, "'', ar2-1) and (b0, bl, b2, ..., br2_l ) respectively

then at tO + 2n2T the OUtl_t sequence should be

(eO + b0, aI + bI, ..., at2. I + br2. I) ,

where T is the time required for each shift. The polynomial re(x) may

be the generator polynomial g2(x) of the second component code, but so

far as the economy of circuitry is concerned, re(x) should be the poly-

nomial of degree n-k with minimum number of non-zero coefficients which

generates a recursive sequence of period n2.

I_t

E

Fig. 4.17 An Accumulating Adder Over GF(q) •
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4.6 Syndrome Calculation of a Cyclic-Component Product Code with

Parity-Check Matrix H - H 1 @ H2

Figs. 4.13, 4.15 and 4.16 can be modified to serve as syndrome

calculators of the cyclic-component product code with parity-check matrix

H = Hl_H 2. The modified circuits are shown in Figs. 4.18, 4.19 and 4.20

re spectively.

Fig. 4.18 Syndrome Calculator Corresponding to the

Encoder of Fig. 4.13

The gate of each divider is open only when the remainder of that

particular divider is shifting out as o_tp-t,
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_._ ........

," O_tF_t
r

Ea
....... 41]- -Ct--

Fig. 4.19 Syndrome Calculator Corresponding to the Encoder of
Fig. 4.15. Timing for the Switches and Gates is the

same as that of Fig, _.15.

Switches K are at position i for the first k2 digits of each subblock

of length n2 and at position k the rest of time. The gate of each divider

is open only when the remainder of that particular divider is shifting out

as output,
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Fig. _.20 Syndrome Calculator Corresponding to the Encoder of Fig. 4.16



4.7 Encoding of a Cyclic-Component Product Code with Generator Matrix

G = Gl_G 2

Fig. 3-7 can be replaced by Fig. 4.21 for the case of cyclic-component

codes. Two e_uivalent circuits are shown in Figs. 4.22 and 4.23. The

generator matrix is G = GI _ G2 •

C

I

w

o

8

r
>

_c r-

Fig. 4.21 Encoder for a Cyclic-Component Product Code with Generator

Matrix G = G1 @ G2
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'_L.o O_±p_t
2-

(coJ• W_l

Fig. 4.22 An Equivalent Circuit of Fig. 4.21
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Fig. 4.23 Another Equivalent Circuit of Fig. _. 21
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Another alternative of implementing the cyclic-component code with generator

matrix G = GIG G2 is shown in Fig. 4.24.

°_ - -_

)

I.p,,t

?.(I,to,..

iN- .. L_. _L ,,_

&,

O.t_t

_o_ _o_)

Fig. 4.24 Another Alternative Encoder for the Cyclic-Component Product

Code with Generator Matrix G = Gl_G 2

-lO8-



There are kI encoders connected according to g2(x), the generator poly-

nomial of the second component code. The output of each encoder is

stored in a buffer stage or a repeater so that the sequence out of the

second component encoder is repeated nI times. For the first n2 digits,

akl )T(al, _2, "--, is the last column of GI while for the second I_2

digits, (al, a2, ..., akl)T takes the value of the (nl-1)th column of

G2, etc. An equivalent circuit of Fig. 4.24 is shown in Fig. 4.25.

t':o.

a_

Fig. 4.25 An Equivalent Circuit of Fig. _.24
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4.8 Syndrome Calculation of a C_clic-Component Product Code with

Generator Matrix G = GI _ G2

Let ,r_ be a received nlr_2-tuple and fa_ be the code vector whose

information digits are identical to those in _r . Then

,s',=

where ,s', is the vector obtained by complementing the syndrome _s with

zeros at information positions. Hence the syndrome of the cyclic-component

product code with generator matrix G = G1 _ G2 can be calculated by the

circuit shown in Fig. 4.26. The switch K is at position 1 when check

digits are fed in and at position 2 when information digits are fed in.

Any circuit shown in Figs. 4.21, 4.22, 4.23, 4.24 and 4.25 can be used as

the check digit calculator in Fig. 4.26.

Inp

Fig. 4.26 Syndrome Calculator of the Cyclic-Component Code

with Generator Matrix G - G1 _ G2

Usually, it is more convenient to have the syndrome given as in

Equation (_.15). It can be shown that the syndrome shown in

.s. IH1
= _ HT = ,r, Inl

-ii0-
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can be obtained from the _atput of Fig. _.26 by passimg it through a

linear circuit whose output vector components are linear combinations

of those of the in_t vector. We may consider this linear transform

circuit as part of the decoding circuit after syndrome c_culation.

From the discussion of the previous sections in this chapter, we

know that the circuit of a cyclic-cc_ product encoder is quite

s_lar to that of its _ calculator. Therefore, in the following

sections of this chapter, we discuss only the encoder of a cyclic-

component product code. But the results are also valid for the syndrome

calculator.

with Dual Component Codes

Let C1 be the systematle cyclic code of length nI generated by the

pol_mominl gl(X) of degree n1 - _. Then the dual code C1' of C1 is

genez=t_=_ the poZ_Q=i_Zhl(z). (xnl --1)/gl(x) _=h i. o__=e

kI. Similarly, let C2 be the systematic cyclic code _of length m2

generated by the polynomial g2(x) of degree n2 - _ • _er, the dual

codec_or c2 iss_tea bythepo_yn_ _(=). (=_ - _)/_(x)

which is of degree k2. Let the parity-check matrices of codes Cl, C1', C2

From Figures 4.13, _.15 and _.16, we knew that the cyclic_om_oment

encoded by the same circuit, except that the second input of each nmulti-

plier ai or _ is different for the code with parity-check matrix HI@ _

from that with H_@H_. The values of ai's or ai's can be prestored in

two separate storage devices. The operating mode of the encoder depends
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on which output of the storage devices is taken. Or, alternatively,

Fig. 4.14 is used to generate one sequences say the ai's for the code

with check matrix H1 _ H2 , and a linear combination of ai's gives the

a_ 's for the code with check matrix Hi @ H2, as shown in Fig. 4.27.

A detailed discussion of obtaining one recursive sequence from the

other can be found in the literature.5

Fig. 4.27 A Circuit Generating Two Recursive Sequences

By examining the similarity between Fig. 4.15 and Fig. 4.16, we

know that it is possible to begin by implementing the encoder for the

cyclic-component product code with parity-check matrix Hl_H 2 according

to Fig. 4.15. Then when the channel characteristics change we switch

the inputs to, and t_e outputs from, each encoder of the second component

code as shown in Fig. 4.16. In other words, we have the encoder changed

to a new mode_a cyclic-component code with parity-check matrix Hl_ _.

-ll2-



From the above discussion we can conclude that a single encoder can

be used to encode four cyclic-component product codes with parity-check

matrices HI@H2, Hl@H2, HI@ _ and H_@_. The interchange of

first component code with its dual can be achieved by properly selecting

the recurslve sequence corresponding to H1 or H2. The choice of the

second component code and its dual is determined by the input and output

position of each second c_--mponentencoder.

4.10 Encoding of Cyclic-Component Product Codes Generated by G = G1 _ G2

with Dual Component Codes

|

Let C1, C_, C2 and C2 be the codes specified in the last section, and

their generator matrices be respectively G1, Gl', G2 and G_ •

Exam_ n_ng the similarity between Fig. 4.22 and fig. 4.23, we know

that a single circuit can be the encoder of the cyclic-component product

codes with generator matrices G1 @ G2, G1 @ G_, G_ @ G2 and G_ @ G_ •

The change of modes is controlled by the input and output positions of

the first and second component codes.

By reasoning similar to that given in the last section, the similarity

between Fig. 4.24 and Fig. 4.25 can also be employed to design a single

circuit with different modes, each of which corresponds to one cyclic-

component product code.

4.11 Encoding of 8 BAal Cyclic-Corn onent Product Codes b a Si le Encoder

Examining the similarity between Fig. 4.15 and Fig. 4.24, and that

between Fig. 4.16 and Fig. 4.25, we know that it is possible to encode

the cyclic-component product with parity-check matrix H = H1 _ H2 and

the cycllc-component product code with generator matrix G --G1 _ G2 by

a single circuit, the change of mode being achieved by varying the input
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and output positions of both the first and second component codes. Also,

from the discussions of the last two sections, we conclude that all eight

cyclic-component product codes with duality relationship among either or

all of their component codes can be implemented by a single encoder with

switches used to change from one mode to the other.

A detailed example is given as follows.

Let CI be the (15_5) B-C-H 3-error-correcting code. The generator

polynomial g(x) is

gl (X) = (x4+x+l) (X4+X3+X2+X+l) (x2+x+l)

= x lO + X 8 + X 5 + X 4 +X 2 +X + 1

and hl(X ) = x15-1 = x 5 + x 3 + x + 1 .

The parity-check matrix is

H1 =

-lO O0000000 lOlO 1

OlO000000011111

O01000000011010

000100000001101

000010000010011

000001000011 i0 0

O00000100001110

000000010000111

000000001010110

000000000101011

The generator matrix is

G1 --

llO llO0 i0 i000_

iii0 ii0010100

lOlOllll00010

ll01011110001

lOll001010000
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o

' ' (15,Let C 1 be the dual of CI, %hen C 1 is a

code wlth genera%or polynomial

and

Then_

i0) 2-adjacent-error-correctlng

g_(x)= hl(X)= x5 + xS + x + l

h_'(x)= x1°+ x8 + x5 + x_ + x2 + x + I.

_O00ilOlO01101 _

I00 iiii01011

_= 010 011110101

0010100110 iii

0 O0 i0 i00110 ii

Let C2 be the

be its dual. Then

t

G1 =

llO10100000000 0

OllO lOlO 000 O000

lllO 000 i00 O0000

01110000 i0 O0000

0011 i00001000 O0

llO0 i0000010000

lOll 0000 O001000

0101 i00000 O0 i00

llll i000 O0 O00 I0

i0 i0 i000000 O00l
D

!

(7,_) single-error-correcting cyclic Hamming code; C2

g2(X) = X 3 + X + i

h2Cx)= x_ + _ + x + 1

O0101il
i0111

01011

lilOlOOil
G2 -_ ii010

ii001

01000



g_(x)--x_ + x2 + x + i

h_(x)_ _3 + x + i

00010

i0011

_= 0lOll

00101

G_= lllOl
lOlO0

The eight cyclic component product codes are listed as follows:

Code n-k Min. Distance

PC 1 30 3

PC 2 40 4

PC 3 15 3

PC4 20 4 -

PC 5 85 21

PC 6 90 28

PC7 65 9

PC 8 75 12

Parity-Check Matrix

_i®H2

_i®_

E:®_2

Generator Matrix

G1 ® G2

GIeG_

GI® a2

aI® a_

Table 4.1 8 Product Codes with Cyclic Component Codes

The overall length of each product code is nln 2 = 105.

An encoder which possesses all these eight modes is shown in Fig. 4.28.
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4.28 An Encoder with Eight Operating ModesFig.

!
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The timing for the switches and gates in the PC1 and PC5 modesis given below:

KI

GI-- GIO

GII -- G20

Gpl

G22

G25 _ G34

K2--Ell

G36 -- G45

_22 --Ksl

For the PC 1 Code

7iT + _ (7i+4)T-

i

Closed

Open

Open

Close

Close

1

Open

1

(7i+4)T + -_ (7i+7)T- i = 0,1,2,...,14

i

Closed

Open

Closed

Open

Open

i

Closed

i

K32 is at position i for OT+ -- 39T-_ 42T+--46T'; 49T+--53T-;

56T+ _ 60T'; 63T +- 67T-; 70T+- 74T-; 77T+ --81T-; 84T+ --88T-;

91T+Q95T - and 98T+--IO2T -. K32 is at position 2 for the rest of the

time in a code word period.

G46---G55 are closed most of the time and G56 - G65 are open most of the

time except during the following intervals.

IO2T +- lOST- :

95T + 98T- :

88T +- 91T- :

81T +- 84T- :

74T +- 77T- :

67T +- 70T- :

60T + 63T---

G46 is open and G56 is closed.

G47 is open and G57 is closed.

G48 is open and G58 is closed.

G49 is open and G59 is closed.

G50 is open and G60 is closed.

G51 is open and G61 is closed.

G52 is open and G62 is closed.
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5ST+ -- 56T- :

_6T+- 492- :

392+ u 42T- :

G53 is open and G63 is closed.

G54 is open and G64 is closed.

G55 is open and G65 is closed.

For the PC5 Code

The following gates are open throughout the code word period:

G6 _ G20 , G23 -- G2_ , G35 -- G_5,

The following gates are closed all the time

G61--G65.

G21, G22, G56 - G60 •

KI is at position i all the time while K32 stays at position 2.

G46--Gso are closed for OT+- 98T" and open for 98T+ -- lOST-.

GI & G25 are closed only for 28T + -- 32T- •

G2 &G26 are closed only for 21T +

G3 & G27 are closed only for I_T +

G4 & G28 are closed only for 7T+

-- 25T- .

-- 1ST- .

-- liT- •

G5 & G29 are closed only for OT+ -- _T- •

Ki+ 1 is at position 1 when Gi is closed, and goes to position 2 when

GI is open for i = 1,2_3,4, and 5.

K22--E26 are at position 2 most of the time, except during the

following intervals:

K_2 is at position 1 only for 28T + -- 35T-.

K23 is at position 1 only for 21T + -- 28T-.

K24 is at position 1 only for 14T+ -- 21T-.

K25 is at position 1 only for 7T+ _ l_T-.

K26 is at position i only for OT+ -- 7T-.

K32 is a position 2 all the time.
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It should be noted that the multipliers of Figs. 4.15, 4.16, 4.24

and 4.25 can be replaced by gates for the binary case. The gate-controlling

signals can be taken from the outputs of the shift registers as shown

in Fig. 4.29. For the PC 1 code all the gates are closed, and the preset

sequence for the shifts registers is

(i 0 1 0 0 1 1 0 1 i) = (alO, a9, a8, _, a6,..., al).

Fig. 4.29 Gates Controlling Signals

For the K's closed the polynomial is

x I0 + x 9 + x 8 + x6 + x 5 + x 2 + i,

the reciprocal of gl(x). For the K's open the polynomial is

X 5 + X 3 + X + i = hl(X).

For the PC 5 code_ all the gates 8re open_ and the preset sequence for the

shift registers is

(1 0 0 0 O)= (as, a4, a3, a2, al).
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Other modes can _e set up in a similar manner by proper assignment

of the switchiDg operations.

_.12 P_arks

Secticms _.i through It.3 are a _rief review of the encoding and

syndrome calculating circuits for the cyclic codes. SectiQn _._ is

similar to Tang's work _, but it is pointed out in this secti_that

both the encoder and the syndrome calculator of a cyclic code can be

connected correSl_ to either g(x) or h(x) whichever has the lower

degree. Fig. _ "A general purpose decoder for dual codes" of reference

(_) is actual_ a syndrome calculator which can be a decoder only if the

codes under considerations are w_-,_,_ single-error-correcting codes.
i-

Sectlo.s _-5 t_ro_ _.11 are or_. Let us _ Table _.i:

The product codes PCI and PC3 have the same _._.wm distance but different

redundancy. It seems to impl 7 that code PC3 is trotter than code PC1.

This is actually not so, because PC I is capable of locating 3 independent

corrupted subblocEs containing 2 or fewer errors while PC 3 can locate

2-adjacent erroneous subblocks containing 2 or fewer errors. A

similar argument applies to codes PC 2 and PC_. The variations of

m_,1_ distance smQng codes PCs, PC 6, P_ and PC8 are _ch larger than

among the other _ codes listed in Table _. I.

If we _ intend to design an encoder for _ cyclic-component product

codes whose generator matrices are _iven as GI_G2_G_G2_ GI_G _ and

and G_G_, then_s _.22 and _.23 appear to be much simpler than

Figures _.2_ and _.25, since the for_r require no buffers, no multipliers

and no restored sequences. But Figures _.22 and _.23 cannot be transformed

tO encode product codes with Imrity-check matrix HIgH _ by simply changing
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the input and output positions of the component codes.

If codes PCs, PC6, PC7 and PC8 in Table 4.1 are respectively replaced

by their equivalent codes each with generator matrix H]'@G2, Hi QG_,

HI_G 2 and HIQG_, some saving in generating the gate controlling signals

may result

The high degree of flexibility in code redundancy is quite useful in

space-vehicle-to-ground communication, since the channel characteristics

are affected by several factors such as distance, vehicle velocity and

weather. It requires a coding scheme with variable error-correctability

at different times so that the transmission error probability may always

be kept within tolerance while the transmission rate is correspondingly

adjusted. Since the decoders are usually much more complicated, it is

conjectured that the vehicle will contain only the transmitter and decoder

to provide one-way communication.

Having presented the syndrome calculations, we shall discuss some

decoding schemes in the next chapter.
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cmu_sR 5

A NOTE ON DECODING SY_C CYCLIC COIES

The first error-correction procedure for the binary Bose-Chaudhuri-

Hocquenghem codes was found by Peterson. 32 The extension to the decoding

for non-binax_ codes was discovered by Gorenstein and Zierler. 33 Recently,

some new decoding procedures and algorithms for the B-C-H codes have been

suggested by several other authors. 15'16'17'18 Along another line,

Prange 30 discovered the permutation decoding procedure for the systematic

cyclic codes in general. This scheme was carried on further by

MacWilllsms. 31

The procedure of cyclic permutation decoding is straightforward, and

the circuit for implementing it is simple. Unfortunately, this decoding

scheme is capable of correcting only a part of all the correctable error

patterns of the code. While all the other decoding procedures mentioned

in the last paragraph are tedious and the circuits c_mplex, they are

designed to correct all the errors specified by the code capability.

Therefore, we suggest decoding a cyclic code mainly by the cyclic permutation

procedure, which can decode a large fraction of all the received vectors;

whenever the cyclic permutation fails, an auxiliary decoding scheme is

used to correct the re_Inlng error patterns. In so doing, the total

decoding time will be significantly less than when employing any other

decoding scheme alone since most of the time the cyclic permutation

decoding procedure will be used and the auxiliary circuits will be idle.

In this chapter, the cyclic permutation decoding scheme is first

described. The circuit to implement such a scheme is then discussed.
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A detailed example of decoding the B-C-H (15,5) code employing cyclic

permutation, and a simple auxiliary schemeare illustrated. It is

believed that the combined schemefor decoding the (15,5) code is the

simplest one of all the existing procedures. It is doubtful that such

simple auxiliary schemeswill always be available to complementthe

capability of the cyclic permutation decoding.

5.1 Cyclic Permutation Decodin_ of Systematic Cyclic Codes

The decoding procedure for cyclic codes, in general, involves many

difficult steps beyond syndrome calculation. In particular it involves

computations over the extension field GF(qm). The decoding scheme

suggested here makes full use of the cyclic property of a cyclic code.

With a straightforward division (i.e., syndrome calculation) this method

is capable of correcting any pattern of information_ digits in a code

word. For a t-error-correcting (njk) cyclic code, if the errors are so

distributed that there exist k consecutive error-free digits (k' digits

at the end of the code word and k-k' digits at the beginning of the code

word are also considered as k consecutive digits) then t or fewer errors

can be corrected.

It is well known that the parity check matrix H of an (n,k) systematic

cyclic code can be written as

H = [In_ k P],

where P is an (n-k) X k matrix. Let _r ,be the received vector, then

(5.1)

(5.2)
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where _f is the correct code vector and .e. is the error pattern.

resulting syndrome is

The

,_, = ,_, _ = (,_, + ,e,) H_

= ,e,_ _ • (5-3)

S_ce ,Z, _ = O. (5._.)

If the error pattern is such that the last k places are all zero, i.e.,

.e ,= (eo, el, e2, ..., en_k_l, 0 O, ..., 0), (5-5)

then

,s, =,e,H T = (eo, el, ..., en_k_l). (5.6)

Thus the syndrome exhibits the original error pattern. Now suppose

that eL_ is of the form

.e. = ( eo, el, ..., el_l, 00000, ..., O, ei+k, ei+k+l, ...., en_l). (5-7)

k zeros -')

Let _c be the cyclic permutation matrix, then

(843,al, .-., an-l) _c _" (an-l, aO, al, -'-, an- 3, an-2)" (5.8)

By the fact that the cyclic permntation of a code word is still a code

word, the syndrome of the received word after n-i-k shifts is

nSn-l-k _= rLL _n-l-k HT = fu_ _n-l-k + _ n-l-k HT

= .e, _n-i-k ET

(ei+k, ei+k+l, ---, en_ l, eO, eI, ---, el_ l)

(5.9)

Thus the new syndrome exhibits the permuted error pattern.
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Therefore, whenever the received code word contains k or more consecutive

error-free digits there exists at least one syndrome of permutation which

exhibits exactly the erronerous digit positions.

Let eL_ contain e random errors with e g t. Then it can be shown

that the weight of the syndrome , s, = ,e, HT, denoted by W( su_ ), is

e ithe r:

(a) w( _. )= e ]

for (b) W( sL_ ) _ d-e,

where d is the minimum weight of non-zero code words (d _ 2t +i for a

t-error-correcting code). To show the validity of (a) and (b), note that

_e. - .s'. is a code word*, where is', is the vector derived from _L by

adding k zeros to the right of ,s_ , i.e., if

• Sl ----"( 3SLL = (So, Sl, .. , Sn_k_l) , _ So, Sl, s2, ... Sn_k_l, O, O, ... 0).

(5.1o)

Hence

w( ,_, - _ ) _ w( _t_ ) + w( _A ) --w( ,_, ) + w( _ ). (5.11)

But eu_ + _ is a code word,

w( ,e_t_- ,s',) = o or _ d. (5.12)

*Here sus',=i,s, , ,0 ,land HT = [Ip] , ,s',KT =, s,I + Ou_P = s__s_

Also, le ,HT = _ , [ _ - _ ] HT = Ou_ , ,e , - s_ is a code word.
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From the above discussion and Equations (5.10), (5.11), we have

either (a) or (b) of Equation (5.10), where

(a) occurs if and only if the last k digits of ra_

is free of error, and

(b) occurs if and only if at least one error occurs in

the last k digits.

decoding procedure just described can be su_zed in the following

3 steps.

(1) Feed the received vector ,r, into the syndrome

calculator and count the weight of the syndrome

W( ,s, ). If W( su_ ) g t, we correct the

received vector to obtain a code word vector as

where _ has been descirbed in the previouw

paragraph. If W( sL_ ) _ t, go to Step (2).

(2) Feed the shifted vector _r. _cinto the syndrome

calculator. Then go through Step (1) for the

new syndrome _ = _r _c_-

If W( si ) _ t, try a_r _ic ' for i - 2,3,...,n-1,

successively. Stop the process whenever W(,si_) g t.

The permuted error pattern is exhibited by _ , and

the corrections may be made.

This decoding scheme is capable of correcting any pattern of errors

less than n/k, since if e < n/k, there exists at least one run of k

consecutive error-free digits in the received vector ,r, •
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n we require that(3) For the range of e, t _ e > _ ,

there exists at least one run of consecutive k

error-free digits in the received code word.

Otherwise, some auxiliary means should be used

in order to correct all the error patterns with

t or less errors.

A further thought on Step (2) will help a great deal in simplli_ing

the circuit. Let r(x) be the corresponding polynomial of degree n-1

to the received vector _ .

Then r(x) xi(mod xn-1) is the corresponding polynomial for _ _i
C "

And let g(x) of degree n-k be the generator polynomial of the systematic

code. The syndrome s(x) is given as

r(x)- ql(X)g(x)+ s(x),mod(xn-l),

where degree s(x) < n-k

and r(x) x i - ql(X) g(x) x i + s(x) xi, mod(xn-1)

=- q2(x) g(x) + q3(x) q(x) + sl(x) , mod(xn-l),

where q2(x) = Xiql(X )

and s(x) x i ---q3(x) q(x) + Sl(X),mod(xn-1)

with degree Sl(X) < n-k .

It is clear that Sl(X ) is the syndrome for r(x) x i and Sl(X) is also

the remainder after dividing s(x) x i by g(x). In other words, Sl(X) can

be obtained by shifting s(x) i times in a divider connected according to

g(x) with s(x) as remainder in the shift registers. Hence the decoding

procedure can be revised as follows:

(5.15)

(5.16)

(5.17)
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(1) Feed the received vector .r, into the syndrome

calculator connected according to g(x) and count

the weight of the syndrome W( ,s, ). If

W( ,s, ) _ t, we correct the received vector to

obtain a code word vector as

_--_r,- s',.

If W( sL_ ) >t, go to Step (2).

(2) Disconnect the input and shift the remainder s

in the shlft-registers. And for each shift we

count the weight of the shifted new symdrome.

Stop the shifting whenever W( si ) _ t. The

correct code word is then given by

r s_,i o ,,tLL_Jj C "

(3) Call for an auxiliary decoding scheme if

w( _!_ ) > t zor i = 1,2,...in.

5.2 Decoding of the Binary 3-Error-Correcting (15,5) B-C-H Code

The binary S-error-correcting (15,5) B-C-H code contains 25 = 32

code words, and has a m_n_ distance of 7- Hence it is capable of

correcting any error pattern consisting of 3 or fewer random errors,

detailed decoding procedure of such a code is given as follows: Let

the generator polynomial of the (15,5) code be

g(x) : (x_+x+i) (x4+x3+x2+x+l) (x2+x+l)

x °+xS+xS+x +x2+x+ 

A

(5.i9)
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The parity-check matrix H and the generator matrix G are then

and

H

S

i00000000010 iO 1

0 iO 00000 O0 ii iii

00 i0000000 ii010

O00100000001101

000010000010011

000001000011100

O00000100001110

O00000010000111

O00000OOlOlOllO

000000000101011
m

llO llO O lO 1000 _

iii0110010100

lOlOllllO0010

Ii01011110001

i011001010000

Since x4+x3+x2+x+l is a factor of g(x), any code word satisfying the

parity-check matrix H of Equation (5.20) should also satisfy the

following matrix H' corresponding to x4+x3+x2+x+l.

O001100011000

I 00 i0 lO 010 lO Q
H' = 010100 lO i00 i0

OOllO00110001

The decoding procedure can now be listed as follows.

(1) Feed the received vector into the syndrome calculator

as shown in Fig. 5.1. If the weight indicator shows

that the weight_ i.e._ the total number of l's of the

syndrome is zero, then there is no error in the received

vector. If the weight shown is no more than 3_ there is

no error in the first k = 5 information digits. Thus

the errors are in the check digits and no correction is

required.

(5.2o)

(5.21)

(5.22)
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,P I _ !

I
Weisht I.d;c_'[or

Fig. 5.1 Syndrome Calculator

(2) If the weight of the _rndrome is greater than 3,

there is at least one error in the first k = 5

information digits. Allow the syndrome to shift

by itself with no further input until at the ith

shift the weight indicator shows a weight of 3

or less. Then take this shifted "syndrum_",

denoted bye, , and form_,,iL _ 0 0 0 0 01.

The true error pattern can be obtained by shifting

e' backward i times.

(3) If the weight of each of the 15 shifted "syndromes"

is greater than three, we know there are exactly

three errors, evenly spaced. Then we feed the

received code vector into the auxiliary "subsyndrome"

calculator shown in Fig. 5.2 whose parity-check matrix
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is given by Equation (5.22).

Fig. 5.2 The Auxiliary Sub syndrome Calculator

The error pattern indicator "transforms" the

subsyndromes into the error patterns in the

following manner:

(I000)_(i0000 i0000 lO000)

(oloo)$(olooo oloooolooo)

(0010)_(00100 00100 OOiO0)

(oooi)_->(OOOLOOOOLOOOOLO)

(iiii)__(00001 00001 00001).

The following examples will help to clariy the decoding procedure.

Example i

Let LLr = (0 1 1 0 1 0 0 0 0 0 1 0 0 0 O) be the received vector.

Then the syndrome _ is

susj=,r,HT = (iO 0 0 0 i 0 0 I 0).

The weight of the syndrome

w[su___]--3.
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Hence the information digits (iOOO0) are correct. No correction is required.

Example 2

,_,= (0 ll 0 0 1 1 0 0 1 0 1 1 0 O)

.s -,r,g= (1100011110)

W[, s .] =6>3.

ffence we should shift the syndrome in the syndrome calculator as sh_n

In_g. 5-3.

welght

i i 0 0 0 i I i i 0 6

ist shift 0 1 1 0 0 0 1 1 1 1 6

_nd shift 1 1 0 1 1 1 0 1 0 1 7

shift 1 0 0 0 0 0 1 0 0 0

Fig. 5-3 Cyclic Shifts of a Syndrome

_refore

,$3,= (i 0 0 0 0 0 1 0 0 0), since W[ _] = 2 < 3

and ,_.,=(ioooooioooooooo )
%_ •

_e = 3 b_kwar_ shiftsof,e',

-(O00100000000100).
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Hence the correct code word u__f is

Example 3,

,f,=,r,+,e,

= (OlllOllOOlOZO00).

,r,= (llllOllOlO00000)

,s,=_r _= (l i i i 0 1 i 0 i O)

w[_]=7>3.

The weight of each of the 15 shifts of the syndrome is greater than 3.

Hence, upon trying ,s ,= _r H' = (0 0 1 0), we I_ the error pattern

should be

,e ,= (0 0 i 0 0 0 0 i 0 0 0 0 1 0 O)

,f,=,r,+ eu£_= (i i 0 i 0 1 i i i 0 0 0 i 0 0).

5.3 Remarks

The cyclic permutation decoding procedure is particularly suitable

for high-redundancy short cyclic codes and for B-C-H codes generated by

non-primitlve elements. The following table shows the number of random

errors correctable by the permutation decoding scheme, ec, and the code

error-correctability, t_ of some of this class of binary Bose-Chaudhuri-

Hocquenghem codes.

n k t ec t-e c

21 12 2 1 i

6 3 3 o

4 4 4 o

23 12 3 1 2
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n

25

27

33

35

39

_3

k

5

3

13

11

8

15

3

29

23

11

7

5

2_

7

4

35

27

19

11

9
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2

2

2

3

7

3

6

3

2

3

4:

7

I0

2

3

I0

2

4

5

8

5

e c

2

2

2

3

7

2

6

2

1

1

6

8

1

3

i0

1

1

2

4

5

t-e c
I

0

0

0

0

0

0

1

0

1

1

2

0

1

2

1

0

0

1

3

3

4

0



n

55

57

65

69

71

?3

k

15

21

3

41

29

17

5

36

14

3

36

55

46

37

28

19

i0

t

2

5

2

9

2

3

5

6

2

7

ll

2

4

5

6

8

12

e c

2

5

2

9

1

2

3

6

1

4

ll

1

i

i

i

2

3

7

t -eC

0

0

0

0

i

i

2

0

1

3

0

2

1

3

4

4

5

5-
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MacW_ also has suggested the following per_r_ation transform

U: i-,qi for i = 1,2,...,n-l,

where i is the position index of the component ai of a code word

al, ..., ..-, over

With this pexI_tion, some of the cyclic codes SLre cable of correcting

all the correctable error _tterns. But the implementation of such a

perzzatation is not simple and for each U-transform of the received

sequence it is required to repeat the three decoding steps mentioned in

Section 5.1. Therefore+,+we suggest ccubin_ the technique described in

Section 5.1 with other decoding schemes rather than going through the

U-transfor_

The cyclic permutatic_ combined with the U-transfora fails to

decode completely the binary S-error-correcting (15,5) B-C-H code as

5.2.

In certain applications, it may be desirable to have an extremely

simply decoding procedure which corrects a major fraction of theoretically

correctable error patterns and sounds an alarm whenever the error l_ttern

falls outside of that major fracti_. The per_atati_ decoding procedure

is particularly suitable for such an applications. Take an error-locating

code for example. If we ta_e the binary 5-error-correcting B-C-H (31,11)

code as the first cu_t code, then permutation decoding is cable

of correcting two errors which corresponds to two subblocks in the error-
1

locati_, code. Therefore, if there are two or fewer subblocks in error,

we locate them and eidMber _onsider such errors as tolerable or ask for

retransmission of these two subblocks only.



If there are more than two corrupted subblocks, we may not be able to locate

erroneous subblocks by the permutation method and in this case we ask for

retransmission of the entire code block regardless of whether we maybe

able to locate the erroneous subblocks by other methods.

In general, it can be shownthat a t-error-correcting code with

minimumdistance d _ 2t is capable of correcting errors of magnitude

ec K t and simultaneously detect errors of magnitude less than or

equal to d-ec-1 _ t. Hence3a t-error-correctlng code with minimum

distance d = 2t + 1 can perform one of the following functions :

(1) detecting 2t errors;

(2)
correcting ec k errors and simultaneously

detecting 2t-e c errors;

(3) correcting t errors.
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_6

N_CELLA]IEOUS RESULTS AND CONCLUSIONS

In this chapter the results of Chapter 2 are used to find the

distance of the product code specified by H = KI®B 2. Saitable

channels for employing product codes are discussed. Conclusions and

recommendations for future research are presented.

6.1 Minimm-Distances of Product Codes

It has been sh_* that the _4nlw_ distance of a product code

generated by G = GI_G 2 is the product of the _,_,m distances of

its component codes. We n_ proceed to find the _ distance for

the proauct code ,_-ct.._ed by - = Hi® _. _e follo_ le-- is

useful in dete_ the _ distance for such a_r,:z_'M 6ode.

Lenma 6.1

Let V be a subspace of the space containing all

n-tuples over GF(q). Let V be the complementary

space of V, i.e., V(_ V - whole space of n-tuples

over aF(_). Also let v e V, • e Y, and b_ v

and V be non-zero vectors. Then d[v, Y] • i,

where _v, V] denotes the distance between

v and V.

*See Reference 2, Chapter 5, Theorem 5-3-
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Proof

Supposed[Y, _] = 0, then v =V _ VNV = 0, by the

definition of the direct sum. This is contradictory

to the assumption that v _ 0 and _ _ 0, therefore,

we :conClude that d[v, _] _ 1. Q.E.D.

Theorem 6.1

The minimum distance, d, of a product code specified

by H = HI_H 2 is given by d = min[dl, d2], where

dI Ss the minimum distance of the first component

code and d2 the minimum distance of the second

component code.

Proof

By Theorem 2.6, the generator matrix of the product

code is given by

LG ® 2J,
which can be transformed by elementary row operations

into the following form:

Without loss of generality, let us assume

G2

then it can be easily shown that one can choose

the complementary space of G2 as row space of

= [I _½ 01.
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I_t _ be any code word of the second component

code. Then the code word generated by the generator

The _-_ distance of such code word is _ and the

m_._ weight of each _bblock is either 0 or d2.

Let ,_2be a code word generated by the generator

matrix @2" Then the code word generated by the

generator matrix GI_ _ is

I

gL_,-_,,g_ ,_, ,..-,_i _ ,'

where (gll, gZ2," "',g].n 1) is a code word of the

first component code. The mln4_,m distance of

_ _ _==_ _ G_®_2 l_ a1,x i = a1.
Hence the minimum distance d of the code word generated

Qi_ __ =_[_1, _]"
We now need. to sh(_r that a linear combination of code

_ _ A_®a 2_ _ G_®_2_ _,,eight

greater than mi_dl, d2]. This is true, since the

c_abined code word is of the form

I I

where a and b are non-_ro field elements.
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For each gli = 0:

w. w[al_ +blgn_]

. w[al s2_i ]

=w[ g213.

When gli _ O, we have the following 2 cases:

(1) W[ g21 ' ] = 0

w -w[___]• l,sinceW[,_,]_ O.

(2) w[,g21] _ o

w ,, _,, d[ , ,g2,] _"1,

by Lemma 6. i.

There are at least dI gli'S which are not zero,

hence the minimum distance is larger than d1.

Therefore,

d = min[dl, _]. Q.E.D.

Even though the minimum distance of a product code specified by H = HIgH 2

is equal to the Smaller minlmmn distance of its two component codes, the

error-control capability of the product code is far superior to that of

its component codes. Therefore, the minimum distance of a code is not

always a good criterion in itself for Judging the code capability.

6.2 Suitable Channels for Employing Product Codes

In general, a product code is suitable for a certain co_m_uication

channel whenever its component codes are the prol_r codes for this
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particular channel. The reason for choosing product codes in such a

channel is that we can have more varieties of code lengths and error

control capabilities at our coQm_ud.

The product codes generated by G = GI_ G2 are particulamly suit-

able for the channels where randam errors and burst errors may occur

s4 ,lt ous v, the 1 roauctcodes speelnea by H = z aua
1

K_ = [Hlq_q] p are appropriate for the channels where errors _nd

to cluster in subblocks. For the channels with _lti-zone detection,

the error-locating codes whose parity-check matrices are given by

H = HI_H 2 or HI = [Hlq@H2q] p are particularly suitable for error-

control. The multi-zone detection scheme indicates the possible

errcmeous digits throughout the entire code word block, while the error-

locating decoder will locate the subblocks ccatalnlug errors. Hence

those digits indicated as erroaeous by the former scheme which lie in

the subblocks located by the latter technique are the highly questionable

digits. In this way we may narrow the erroneous "area" from a whole

subblock to several digits.

6.3 Coneludln6 Remarks

The techniques of finding the null space of the tensor product

space are developed in Chapter 2. This algebraic approach yields the

results which are expressed as much as possible in terms of the null

spaces of the original "component" spaces or their bases. This r_s_s

in better insight of the product code structure and the structure of

its null space. It also enables us to perform further research in

determining the properties of product codes, such as weight distribution,
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possibility of being comma free, etc. The investigation of the decom-

posibility of a code into two component codes whose tensor product gives

the original code, relies heavily on the understanding of the null space

of a tensor product space.

The decomposition of the encoding and decoding procedures of a

product code into those of its component codes, and the capabilities

of product codes, are discussed in Chapter 3- It is also shown in

this chapter that the implementation of a product code can be achieved

by a simple logic combination of those of its component codes. All the

discussions in Chapter S are kept as general as possible and are applicable

to any product code with linear component codes.

In Chapter 4, the product codes with cyclic component codes are

discussed. Since cyclic codes can be most simply implemented, the

encoder and syndrome calculator of a_cyclic code can be easily converted

to those of its dual code by switching, _he implementation of a product

code with cyclic component codes is simpler than that of other product

codes. The encoder and syndrome calculator of such a product code

provide eight operating modes, thus providing a highly flexible communica-

tion system.

A simple decoding scheme for the systematic cyclic code, namely

permutation decoding, is discussed in Chapter 5. This simple scheme is

capable of correcting a large fraction of the correctable errors of the

code. It is suggested that an auxiliary decoding scheme be used whenever

permutation decoding fails to correct errors. A simple and straightforward

method of decoding the binary (15,5) B-C-H code is illustrated as an

exs_ple.
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In the last char, the m_ di_ces of product codes

suitable chanuels for e_loylug the product codes are discussed, An

important result obtained from consideration of the m_ distances

of product codes is that the _-_--_ distance alone is not alws_ a

6._ _c_ _ m_

The following are a direct extension and promising areas for

further research con@erning product codes_

(i) Polynomialdescrfpti_ of product codes with

cyclic cc_ codes. Some of the work has

been done by Yuil134 and Burt(m and. We!dun $7,

but _iun of their work is necessary In

_r to ha_ a _t_r __ of

codes°

(ii) Calc_ti_ of probabilities of error in data

tra_ssion of tensor product codes under

various rates of tra_ssi_.

(iii) Calculation of the weight distributio_ of pr_uct

codes and deter_tio_ of its relati_ to those

of the c_qxm_nt codes,

(iv) St_ Of the code or codes which can be iterated

in a product manner indefinitely with a _-zero

d_ta tra_ssi_ rate.

(v) Searching for different ways of comb_ two or

more codes to form new codes.



APPENDIX

THE DETERMINATION OF NULL SPACE OF A TENSOR PRODUCT

SPACE INVOLVING THE TRANSLATION OF FIELDS

The preliminary lemmas and theorems lead to Theorem 2.7 of Chapter 2

are given in this appendix. The results are extended somewhat beyond

the case that the second component code is cyclic.

Let r(x) be a monic primitive irreducible polynomial of degree L

over GF(q), where q = pL, and let _i for i = 0,1,2,...,q-l, be non-zero

elements of GF(q). The p-ary representations of the _i's are given as

-- q

1

0

0oI 0
• I

0

•'', _i = Toi_O 1 ,''" (A-l)

and

for all k and i mod(_-l).

Te has the similar property if the p-ary representations of _i's are

given as row vectors ._i _'s.

A matrix Apwith elements in GF(p) is said to be a p-ary representa-

tion of a matrix Aqwith elements in GF(q), q = p_, if Ap is obtained

from Aqbyexpressing each of its elements as a column vector with

p-ary components.

(A-2)
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12mma A.I

Let Dp and _ be the p-ary representations of Dq and

_iDq respectively, where _i is a non-zero element of

GF(q), _ = pA. Then

Proof

D_EpT = 0 for all Ep such that

DpEpT = O.

Let

(b_ _) (_ _a_) ... (b_ am)

(b2_ _) (b22 13_22) ... (b2_ _2n)
CA-S)

where oaiJ's are the non-zero elements of GFCq),

and bij = _0 or O. Then

Tbn_an+i)

(N._ a_-÷±)

(b__m+i)...(b_+i)

• •

• t

(A-4)
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The p-ary representations of matrices (A-3) and (A-4) are

bll _all] b 13al2 • .. bln Galn

b21 _a21] b2_a22] ... b2n _a2n]

(A-5)

D

molb2_a_2] ... molb2n_a_n]

*T O is the companion matrix of the primitive polynomial which generates

the fields containing _i's. The matrix TO is given in Equation (2.2_).
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or

4

m

b12_a121 ... bln6aln-
m

1 b2n_2n_

w

(A-6)

The statement that DpEp T = 0 is equivalent to

for j = I_2_3_..._h.

bj_aJ 2] ... bjnBaJni]_T = 0

for J = 1,2,3,...:h.

u,,)J_e_.-nv.L_3 We b_3,-v'e

_F, pT = O. q.E.D.

In coding terminology, we say that if a gp matrix _ is the p-ary

representation of OiDq over GF(q); where oi is any non-zero element of

GF(q) and q = p_, then the code space Dp is invariant under,he changing

of the element Oi.
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Theorem A-I

Let Dlq and D2q be gp m_trices over GF(q), q = pL, of

sizes hI × nI and h2 × n2 respectively. Let D2p be

the p-ary representation of D2q , and let the row spaces

of E2p be the null space of D_p, i.e., D2pE2pT = 0.

If Dp is the p-ary representation of Dq = Dlq_ D2q,

then the row space of Inl_E2p over GF(p) is a

s_bspace of the null space of the matrix Dp.

Proof

By hypothesis

D2pE2p T = 0.

We need only to show

Dp (Inl SE2p) T =0.

But

Dq = Dlq_D2q

I

-allD2q al2D2q ... alnlD2q

a21D2q a22D2q ... a2nlD2q

• • •

ahll q ahl2D2q''' ahlnlD2 q

where the aij's are elements of GF(q).

From Equation (A-8), we can visualize that Dp contains

hI × nI submatrices. Each of them is either a p-ary

representation of aijD2p or a 0-matrix. Let Dijp =
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p-ary representation of aijD2q , which is a zero matrix

if and only if aij = 0, since we assume D2q is not a

zero matrix. Hence,

Dp _--"

-Dllp DIS -.- DlnlP-

Dhll p Dhl2p "'" DhlnlP

and

= _(Inl (_ E2pT)

m

DhllP Dhi2P .-. Dhlnl p

g2p T

©

n I

0
o

o

nl

(A-9)

D2_EsT D_E_

•-- DlnlpE2pT

_in_E_ __

--0 j
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since, by LemmaA-i

DijpE2p T = 0

for i = 1,2,...,h 1

j = 1,2,...,n I • Q.E.D.

Theorem A-2

Let Dlq and D2q be the gp matrices over GF(q), q = P_

of sizes h I × n I and h2 × n 2 respectively. Let

Dlp= [Dlq] p = the p-ary representation of Dlq ,

D2p = [D2q]p_ and the row space of Elp is the null

space of Dlp, i.e. _ DlpElpT = O. Then the row spaces

of Elp _ Ir_2 is a subspace of the null space of

np --[Dlq® D2q]p.

Proof

Let

Dlq =

-all al2 ... aln I-

%1%2 "'"a2nl

_%11%12 "'"%in_

(A-IO)

D_c I =

bll bl 2 .-. bln 2

b21 b22 -.. b2r_2

bh21 bh22 ..- bh2n 2

(A-I_)

Define [Aij]rs as the h2 × n2 matrlxwith only one
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non-zero element aij , positioned at the intersection

of the rth row and sth column, e.g.

-o o o o o... _17 2

0 0 O a 0 . 0
o o o oS6o ._ o

I'A36 _J2_ ....... rows

• * • • • •

0 0 0 0 0... 0

n2 columns

Then

h2_2

[An]lJ [AL_]±j .--[A1n14j

i " "

Note that the e_w space of

[An]_j

blj •

['h2.]ij

KA22]_j

m

•--[Aln_4 j

•-. [._nl]±j

• •

.mmm

is exactly the seine as the row space of

_k_

m

[A,__]_

[A2_.]_

[-_]_ ... [A_j.]_

-.. [t_nl]_

[._,h.).2]kj---[.Ahlnl]kJ

P

P

by Lemma A-I.

(A-12

(A-13)
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Hence,

row space of [Dlq_l_2q_= row space of_

[All]ij [A12]ij ... [Alnl]iJ

[_21_j [A22]ij..•[A2n_l±j
• • •

• • •

[Ahll_ij [Ahl2_ij .-.[Ahlnl_ij

since at least there is one non-zero element in each

column of D2q.

the ith row vector of I_ •Define a_i as

[All]ij

[A2_lij

[Ahllllj

[A12]ij ..- [Alnlllj

[A2 ...[A_ _lj211J i

• •

[Ahi2_±j...[Ahlnlli_p

It is evident that

T

-0

P

(A-14)

(A-15)

if i_j,

since the first matrix has non-zero elements only in

column j, 2j,...,n2j, while the jth 2jth and n2jth

columns of Elp$ i_are all zeros• For i = j

[All]ij [Al2]ij ... [Alul]iJ

[A2_]lj [A221±j...[A_lllj

[Ahll]i j [Ahl2]i j ... [Ahlnl]iJ

[Elp_)_L4]T

P

= [Dlp][Ep] T = O. (A-16)
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Therefore,

t q® @p tE ®j = 0 for i = 1,2,...,n 2

which implies

Ira_a® qlptE p® ] T =0.

_r _a, E!p_A 2 generates a __e

contained in the null space of [Dlq(_D2q] p. Q.E.D.

The results of Theorems A-I and A-2 can be combined in the following

theorem.

Theorem A-_

Let D1p and D2p be the p-ary representations of the gp

matrices Dlq and D2q of q-ary codes CI and C2 respectively

vi'&hq=l_. The sizesof Dlqand D2qare hlXnl audh2 ×n 2

respectively. If the null space of row space Dip is

specified by Elp and that of D2p by E2p , then the row

space of

(A-17)

It can be easily shown that

(A-18)

Hence the dimension of the null space of _ _ nln 2 - Ahlh2. But from

Theorem 2.6 and Corollary 2.6.1 we kn_ that

[Inz(_)Eip ] = nl_ - (#,hl)(#,l_) : nln 2 - .e2hlh2 .
(A-I9)
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6

Therefore j the row space of

is a subspace of the null space of Dp.

So far, no systematic method of evaluatin_ the matrix whose row space

is the complete null space of Dp = [Dlq_D2q] p has been developed.

Fortunately, the most useful codes whose gp matrices are the p-ary

representations of the tensor products of two q-ary gp matrices are the

codes with cyclic q-ary component codes. A cyclic pr-ary code with s rows

in its gp matrix is identical to a cyclic code of the same length with a

one-rowed p_-ary gp matrix, _ = rs, by suitably expressing elements in

the p$-ary field in terms of vectors with components in the pr-ary field.

The following lemma and theorems are developed for the tensor product of

cyclic component codes.

Lemma A-2

Let r(x) = r0 + rlx + r_ + ... + r$_lX_-i + x_ be

a primitive irreducible polynomial over GF(p). Let

To be its companion matrix, then the following mapping

M: GF(p_) -*F(A)

is a homomorphism, where F(A) contains all _ ×

square matrices over GF(p).
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Proof

We define mapping S as

S: GF(p_) _ p-ary representatiom

s(o)=I i-

Lo

= _±] •

It is evident that S is an isomorphism.

sad

and

But

Define U such that U

a humomorphism.

= To i, then M = US which is

Q.E.D.
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Theorem A-4

Let Dlq and Elq be the gp and pg matrices of a q-ary

code, where q = _ and the sizes of Dlq and Elq be

h X n and s × n respectively, h + s = n. Then

where ol is a primitive element of GF(q).

Proof

Let

D1 q = _-i

- alI aln-bll_ bL_a_ ...bm_

b21_a21 b2_ _2 ...b_ _n

b_ b_2 ...b_n

where bij is either 0 or _0, and let

- ml_
tll_ mll tl_ml2 ... tln _

t21_ m2! t22 _22 ... t2n_ _2n

El q = _-i . . .

tsl_msl ts_ ms2 ... tsn_msn

where tij is either 0 or _0. By hypothesis, we have

I

DlqEiJ = 0, equivalently, _-2DlqEiJ = 0,

which implies

ail_mj I bi2tj_ai2_mJ2 bint jn_aln_ mjnbiltjl_ + + ... + = 0

for i = 1,2,...,h, and j = 1,2,...,s.
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By Le_maA-2, Equation (A-22) is equivalent to

biltjlToailTjJ 1 + bi2tj2Toai2TjJ 2 + ... + bintjnT0aimTj jn -0.

Writing this in matrix form, we have

i2
bhlTo shl bh2To ah2 LTo _inTj In- tauTo msn

=0. (A-23)

Nc_,r

Therefore, the first matrix of Equation (2.53) is Just

tae p-_ representat±ono_ __q(_)[_o_z... ,_-z], ,ma

the second matrix is the p-ary representation of

E_@ [_o_... ,s_-Zl. Q.E.D.

It can be easily deduced that, for any i and j

_o
provided DlqEiJ = O. Bat the fom [130_i,... ,_-11, which corresponds

to i = J = 01 is the simplest one, since

[_o ..,_-z]p = z_ .

(A-2_)
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It should be noted that the null space of

row space of

Elq®

-oo]

@

B£-ll

° is the

where the notation [ ].p is the matrix with each element in thebracket

expressed as a row vector over GF(p).

Thoerem A-_ (identical to Theorem 2.7)

Let Dlqand Elq be the respectively gp and pg

matrices of a q-ary code C1 of length nl, where

q = p_. If D2q is a 1 X n2 pgmatrix of a cyclic

q-ary code C2 with n2 k _ and if, with suitable

mapping, D2q is of the form

[ __ii i_ i_+ 1 , in2_l]_0 _i _2 ...,i ,''" ,
t

where _i is a primitiveelement of GF(q); also, if

therow space of E2p is the null space of [D2q]p,

then the null space of [Dlq_D2q] p is

- inI_ E2p

I

"• 0C0_

m

-,p,
a
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where OCGM is introduce_ for the sake of compensating

the length of each submatrlces in the followiz_ manner

m

_o ,
I

131
I

• I o_:1M

:o ,!_-i I

..P_,

_i+l

_;i+£-i

°Ax(r_-_)

pro-_a rank_q -h l, _._[__q]p - _z,

Proof

P

4

-_o ,
!

13z I
I

. I
OCOM

m

-T

• • _L-II 0= ._I 13013Z, . ,w I ZX(n2-_)

I'i

II

E1a_9

=

"_0

_z

by Theorem A-_.

I

I

I
I

I Oco _
I
i

I
I

=0
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Hence 3

E

- Inl_ _'2p

-Bo

131

Elq _ •

_-I

I
I
I

I

Illl,°c

w

is indeed contained in the null space of the row

space of [DlqQD2q] p • It remains to show that

Rank E = nln 2 - _h1. Now,

(A-25)

Rank

Rank InlQE2p = nI Rank E2p = nl(n 2 - _I) = nln 2 - _nI

-Bo

Bx

OCOM
o

Ran_

0 ! -I

I

• I

. I OCOM
!

1_-1 II

= (nI - hl) _ = _nI - _h1.

(A-26)

(A-e7)

We need only to show

Rank E = nln 2 - _hI • (A-28)

_i_en
!

q]P [ ,_-iI B'J _i_+l a_no_D2p= [_ - _0 _l,... , ,.....

= [T_ p],
,!

(A-29)
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then

0

0

4

0

0

0

0

• • o 0

(A-30)

(A-31)

Now

i

I
r
!

I

I
u OCOM

-[_) [_.] ... [_,_1]

[_) [F,_) ... [_-_1)

[E(n l-h l)nl ] [E(nl-h l)n I] ... [E(nl.hl)h I]

(A-32)

A_ynom-zero [Eli] is oft he form

_siJ+l
i .I

o_(___)

, _O+_-i

=Tcaij [I, O_(n2_,)] • (A-33)
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Since Tc is the companion matrix, it defines a linear

mapping, hence the rank of II _ O_(n2__)] is invariaut

under such a transformation. Therefore_

rowspace OfTcaij[_, , O,(n2_,)l.

Hence,

IT _pT in2_ _
rank caij [I_ O_(n2_L)lJ= rank

= rank

II n2"_ I by elementary row operations°_(n2-_)

= rank In2__ + rank IL = n2-_+_ = n2.

This shows that none of the rows of Inl_E2p can

EIqQ

be obtained from

_0 i
I

i

• I
i OCOM
i

-I i
i

and vice versa; hence,

E = RankLInlQEep] + Rank

m

%o

{B1

Ela (_) •

i
!

i

i

I

a 0C
• I

I

-- !

= nln2 - _n I + _nI - _h I = nln 2 - _hI Q.E.D.

(A-34)

(A-35)
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=

w
e

The technique described in this section is valid only when the

gp matrix of the second component code is a I X n2 matrix in GF(q)

con_ a submatrix _i[_0 _i... ,_-i]. In Theorem 2.11, the

-_a-_".-at-v_zxis put at the left end of the gp matrix D2q. Actually,

the submatrlx _i[_0 _l,... ,_-l] can be put aay place, if Deq is

of the form

' _0 ..,_-i ' _i_+jD2 q = _i I _i2,... ,_ij _ _i,. A _i_+J+l,...
t !
t t

si=_them_U _e of[_q® _¢]p
m

m

-- 9
I

!

!

I
I
I
!

is

m

_o , _
I

I
• , %_
• !

I

-i !
!

whereOc_I _ Oc_2 compensate the submatrix in the following manner

-- 130 -' I
!

' _I '! I
I

l ;1_-1. '

!
|
|

!

= )/y,jlW
l
l
!

,p,_

,
!

• !
. ! Of,x (n-J_)

I

I

For the case that the second component code is cyclic, it is

always possible to choose a proper extension field such that

Dzq = [_o 131 _2,... ,_1.
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The null space of the product space can then be determined.

If there is no submatrix in I>2qwhich is of the form _i[_O 61..

then it is necessary to find a permutation matrix _ such that

[0 1 -i I i_ j
! _in2

o2_= _ ,.'.,_ ,_ ,'"
i

By Theorem2.11_.the null space of[ _lq_ (D2q_)_ is

_-l]
e,

Elq®

-i

I

!
!

!

t OCOM
I
I
I
!

,p,

F ]
It Can be easily shown that the null space of _ is

Inl ® E_
m

q

_o ,!
, _
I

Elq _ • , OCOM
!

| _ •

'-i ! _ v

_ --_-

nI _'s

If the gp matrix D2q contains more than one row, we first find the

, where Diq is
null space Ei of the product space Dlq®I [q_

the
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submatrix contains ith row of D2q. The entire null space _ of IDlq_ D2p _

can be expressed as

row space of _ = _ row space of El, (A-36)

alll

where _ denotes intersection. To evaluate the null space _ by

determining the intersection of the row spaces of Ei's is a very tedious

procedure. Therefore, when D2q ccmtains more than one row, the direct

method discussed in Section 2.1 is recommended to calculate the pg matrix
r- -I

gpmatrix is givenas a tensor product ofIDlq_D2.1 ._ when the
t _Jp
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